XC
Xu Chen
Author with expertise in Sleep-Disordered Breathing and Health Outcomes
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
590
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tracking Vital Signs During Sleep Leveraging Off-the-shelf WiFi

Jian Liu et al.Jun 12, 2015
Tracking human vital signs of breathing and heart rates during sleep is important as it can help to assess the general physical health of a person and provide useful clues for diagnosing possible diseases. Traditional approaches (e.g., Polysomnography (PSG)) are limited to clinic usage. Recent radio frequency (RF) based approaches require specialized devices or dedicated wireless sensors and are only able to track breathing rate. In this work, we propose to track the vital signs of both breathing rate and heart rate during sleep by using off-the-shelf WiFi without any wearable or dedicated devices. Our system re-uses existing WiFi network and exploits the fine-grained channel information to capture the minute movements caused by breathing and heart beats. Our system thus has the potential to be widely deployed and perform continuous long-term monitoring. The developed algorithm makes use of the channel information in both time and frequency domain to estimate breathing and heart rates, and it works well when either individual or two persons are in bed. Our extensive experiments demonstrate that our system can accurately capture vital signs during sleep under realistic settings, and achieve comparable or even better performance comparing to traditional and existing approaches, which is a strong indication of providing non-invasive, continuous fine-grained vital signs monitoring without any additional cost.
0
Citation403
0
Save
0

Monitoring Vital Signs and Postures During Sleep Using WiFi Signals

Jian Liu et al.Apr 4, 2018
Tracking human sleeping postures and vital signs of breathing and heart rates during sleep is important as it can help to assess the general physical health of a person and provide useful clues for diagnosing possible diseases. Traditional approaches (e.g., polysomnography) are limited to clinic usage. Recent radio frequency-based approaches require specialized devices or dedicated wireless sensors and are only able to track breathing rate. In this paper, we propose to track the vital signs of both breathing rate and heart rate during sleep by using off-the-shelf WiFi without any wearable or dedicated devices. Our system reuses existing WiFi network and exploits the fine-grained channel information to capture the minute movements caused by breathing and heart beats. Our system thus has the potential to be widely deployed and perform continuous long-term monitoring. The developed algorithm makes use of the channel information in both time and frequency domain to estimate breathing and heart rates, and it works well when either individual or two persons are in bed. Our extensive experiments demonstrate that our system can accurately capture vital signs during sleep under realistic settings, and achieve comparable or even better performance comparing to traditional and existing approaches, which is a strong indication of providing noninvasive, continuous fine-grained vital signs monitoring without any additional cost.
0
Citation187
0
Save