HG
Hanzheng Guo
Author with expertise in Lead-free Piezoelectric Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
2,316
h-index:
37
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cold Sintering Process: A Novel Technique for Low‐Temperature Ceramic Processing of Ferroelectrics

Hanzheng Guo et al.Oct 13, 2016
Research on sintering of dense ceramic materials has been very active in the past decades and still keeps gaining in popularity. Although a number of new techniques have been developed, the sintering process is still performed at high temperatures. Very recently we established a novel protocol, the “Cold Sintering Process ( CSP )”, to achieve dense ceramic solids at extraordinarily low temperatures of <300°C. A wide variety of chemistries and composites were successfully densified using this technique. In this article, a comprehensive CSP tutorial will be delivered by employing three classic ferroelectric materials ( KH 2 PO 4 , Na NO 2 , and BaTiO 3 ) as examples. Together with detailed experimental demonstrations, fundamental mechanisms, as well as the underlying physics from a thermodynamics perspective, are collaboratively outlined. Such an impactful technique opens up a new way for cost‐effective and energy‐saving ceramic processing. We hope that this article will provide a promising route to guide future studies on ultralow temperature ceramic sintering or ceramic materials related integration.
0

Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials

Jing Guo et al.Aug 18, 2016
Co‐sintering ceramic and thermoplastic polymer composites in a single step with very high volume fractions of ceramics seems unlikely, given the vast differences in the typical sintering temperatures of ceramics versus polymers. These processing limitations are overcome with the introduction of a new sintering approach, namely “cold sintering process” (CSP). CSP utilizes a transient low temperature solvent, such as water or water with dissolved solutes in stoichiometric ratios consistent with the ceramic composition, to control the dissolution and precipitation of ceramics and effect densification between room temperature and ≈200 °C. Under these conditions, thermoplastic polymers and ceramic materials can be jointly formed into dense composites. Three diphasic composite examples are demonstrated to show the overall diversity of composite material design between organic and inorganic oxides, including the microwave dielectric Li 2 MoO 4 –(C 2 F 4 ) n , electrolyte Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 –(CH 2 CF 2 ) x [CF 2 CF(CF 3 )] y , and semiconductor V 2 O 5 –poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate composites. Cold sintering is more general and shall have a major impact on the processing of composite materials for many different applications, mechanical, thermal, and electronic, to mention a few possibilities. CSP concepts open up new composite material design and device integration schemes, impacting a wide variety of applications.
0

Lead-free antiferroelectric: xCaZrO3-(1 − x)NaNbO3 system (0 ≤ x ≤ 0.10)

Hiroyuki Shimizu et al.Jan 1, 2015
This study demonstrates that antiferroelectricity can be stabilized in NaNbO(3) (NN) based ceramics by lowering the tolerance factor. Through consideration of the crystal chemistry via the Goldschmidt tolerance factor and polarizability, we show that simultaneous substitution of Zr(4+) and Ca(2+) ions in the Nb and Na sites, respectively, lowers the polarizability and tolerance factor of the (Na(1-x)Ca(x))(Nb(1-x)Zrx)O(3) (CZNN100x) solid solution, while maintaining charge neutrality. Structural investigations using both X-ray diffraction and transmission electron microscopy (TEM) indicated an enhancement of antiferroelectric (AFE) superlattice peaks with CaZrO(3) substitution. The TEM domain analysis revealed that only AFE domains existed in the CZNN4 and CZNN5 ceramics; in contrast, normal NN ceramics displayed coexistence of AFE and ferroelectric (FE) domains at room temperature. The CZNN100x (0.02 ≤x≤ 0.05) ceramics showed double polarization hysteresis loops, characteristic of reversible AFE↔FE phase transition switching. The field-induced polarization decreased drastically with increasing substitution, an effect of the decreases in tolerance factor. In addition, the AFE switching field was increased by the chemical substitution. First principles calculations are performed to obtain insights into the relative stability and coexistence of the AFE and FE phases in single domains. The large decrease of polarization in the CZNN system is explained by a modification of the relative stability of the relevant structures, which favours nonpolar-to-polar AFE transitions over polar-to-polar FE domain switching.
0

Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering

Hanzheng Guo et al.Jul 29, 2016
Sintering is a thermal treatment process that is generally applied to achieve dense bulk solids from particulate materials below the melting temperature. Conventional sintering of polycrystalline ceramics is prevalently performed at quite high temperatures, normally up to 1000 to 1200 °C for most ceramic materials, typically 50% to 75% of the melting temperatures. Here we present a new sintering route to achieve dense ceramics at extraordinarily low temperatures. This method is basically modified from the cold sintering process (CSP) we developed very recently by specifically incorporating the hydrothermal precursor solutions into the particles. BaTiO3 nano polycrystalline ceramics are exemplified for demonstration due to their technological importance and normally high processing temperature under conventional sintering routes. The presented technique could also be extended to a much broader range of material systems than previously demonstrated via a hydrothermal synthesis using water or volatile solutions. Such a methodology is of significant importance, because it provides a chemical roadmap for cost-effective inorganic processing that can enable broad practical applications.