JD
Jan Dam
Author with expertise in Advances in Metabolomics Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
737
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards

Liang Wu et al.Nov 25, 2004
A novel method was developed for the quantitative analysis of the microbial metabolome using a mixture of fully uniformly (U) 13C-labeled metabolites as internal standard (IS) in the metabolite extraction procedure the subsequent liquid chromatography–electrospray ionization-tandem mass spectrometry (LC–ESI-MS/MS) analysis. This mixture of fully U 13C-labeled metabolites was extracted from biomass of Saccharomyces cerevisiae cultivated in a fed-batch fermentation on fully U 13C-labeled substrates. The obtained labeled cell extract contained, in principle, the whole yeast metabolome, allowing the quantification of any intracellular metabolite of interest in S. cerevisiae. We have applied the labeled cell extract as IS in the analysis of glycolytic and tricarboxylic acid (TCA) cycle intermediates in S. cerevisiae sampled in both steady-state and transient conditions following a glucose pulse. The use of labeled IS effectively reduced errors due to variations occurring in the analysis and sample processing. As a result, the linearity of calibration lines and the precision of measurements were significantly improved. Coextraction of the labeled cell extract with the samples also eliminates the need to perform elaborate recovery checks for each metabolite to be analyzed. In conclusion, the method presented leads to less workload, more robustness, and a higher precision in metabolome analysis.
0

Quantitative Evaluation of Intracellular Metabolite Extraction Techniques for Yeast Metabolomics

André Canelas et al.Aug 4, 2009
Accurate determination of intracellular metabolite levels requires well-validated procedures for sampling and sample treatment. Several methods exist for metabolite extraction, but the literature is contradictory regarding the adequacy and performance of each technique. Using a strictly quantitative approach, we have re-evaluated five methods (hot water, HW; boiling ethanol, BE; chloroform−methanol, CM; freezing-thawing in methanol, FTM; acidic acetonitrile−methanol, AANM) for the extraction of 44 intracellular metabolites (phosphorylated intermediates, amino acids, organic acids, nucleotides) from S. cerevisiae cells. Two culture modes were investigated (batch and chemostat) to check for growth condition dependency, and three targeted platforms were employed (two LC-MS and one GC/MS) to exclude analytical bias. Additionally, for the determination of metabolite recoveries, we applied a novel approach based on addition of 13C-labeled internal standards at different stages of sample processing. We found that the choice of extraction method can drastically affect measured metabolite levels, to an extent that for some metabolites even the direction of changes between growth conditions can be inverted. The best performances, in terms of efficacy and metabolite recoveries, were achieved with BE and CM, which yielded nearly identical levels for the metabolites analyzed. According to our results, AANM performs poorly in yeast and FTM cannot be considered adequate as an extraction method, as it does not ensure inactivation of enzymatic activity.