RC
R. Cess
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
7,480
h-index:
59
/
i10-index:
152
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Climate Forcing by Anthropogenic Aerosols

Robert Charlson et al.Jan 24, 1992
Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol in particular has imposed a major perturbation to this forcing. Both the direct scattering of shortwavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.
0
Paper
Citation3,706
0
Save
0

Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment

V. Ramanathan et al.Jan 6, 1989
The study of climate and climate change is hindered by a lack of information on the effect of clouds on the radiation balance of the earth, referred to as the cloud-radiative forcing. Quantitative estimates of the global distributions of cloud-radiative forcing have been obtained from the spaceborne Earth Radiation Budget Experiment (ERBE) launched in 1984. For the April 1985 period, the global shortwave cloud forcing [-44.5 watts per square meter (W/m 2 )] due to the enhancement of planetary albedo, exceeded in magnitude the longwave cloud forcing (31.3 W/m 2 ) resulting from the greenhouse effect of clouds. Thus, clouds had a net cooling effect on the earth. This cooling effect is large over the mid- and high-latitude oceans, with values reaching -100 W/m 2 . The monthly averaged longwave cloud forcing reached maximum values of 50 to 100 W/m 2 over the convectively disturbed regions of the tropics. However, this heating effect is nearly canceled by a correspondingly large negative shortwave cloud forcing, which indicates the delicately balanced state of the tropics. The size of the observed net cloud forcing is about four times as large as the expected value of radiative forcing from a doubling of CO 2 . The shortwave and longwave components of cloud forcing are about ten times as large as those for a CO 2 doubling. Hence, small changes in the cloud-radiative forcing fields can play a significant role as a climate feedback mechanism. For example, during past glaciations a migration toward the equator of the field of strong, negative cloud-radiative forcing, in response to a similar migration of cooler waters, could have significantly amplified oceanic cooling and continental glaciation.
0
Paper
Citation1,744
0
Save
0

Mission to Planet Earth: Role of Clouds and Radiation in Climate

Bruce Wielicki et al.Nov 1, 1995
The role of clouds in modifying the earth's radiation balance is well recognized as a key uncertainty in predicting any potential future climate change. This statement is true whether the climate change of interest is caused by changing emissions of greenhouse gases and sulfates, deforestation, ozone depletion, volcanic eruptions, or changes in the solar constant. This paper presents an overview of the role of the National Aeronautics and Space Administration's Earth Observing System (EOS) satellite data in understanding the role of clouds in the global climate system. The paper gives a brief summary of the cloud/radiation problem, and discusses the critical observations needed to support further investigations. The planned EOS data products are summarized, including the critical advances over current satellite cloud and radiation budget data. Key advances include simultaneous observation of radiation budget and cloud properties, additional information on cloud particle size and phase, improved detection of thin clouds and multilayer cloud systems, greatly reduced ambiguity in partially cloud-filled satellite fields of view, improved calibration and stability of satellite-observed radiances, and improved estimates of radiative fluxes at the top of the atmosphere, at the surface, and at levels within the atmosphere. Outstanding sampling and remote sensing issues that affect data quality are also discussed. Finally, the EOS data are placed in the context of other satellite observations as well as the critical surface, field experiment, and laboratory data needed to address the role of clouds in the climate system. It is concluded that the EOS data are a necessary but insufficient condition for solution of the scientific cloud/radiation issues. A balanced approach of satellite, field, and laboratory data will be required. These combined data can span the necessary spatial scales of global, regional, cloud cell, and cloud particle physics (i.e., from 108 to 10−7 m).
0
Paper
Citation382
0
Save
0

The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models

James Coakley et al.Jan 1, 1983
Guided by the results of doubling-adding solutions to the equation of radiative transfer, we develop a simple technique for incorporating in climate models the effect of the background tropospheric aerosol on solar radiation. Because the atmosphere is practically nonabsorbing for much of the solar spectrum the effects of the tropospheric aerosol on the reflectivity, transmissivity and absorptivity of the atmosphere are adequately accounted for by the properties of a two-layered system with the atmosphere placed above the aerosol layer. The two-stream and delta-Eddington approximations to the radiative transfer equation then provide reasonably accurate estimates of the changes brought about by the aerosol. Furthermore, results of the doubling-adding calculations lead to a simple parameterization for the distribution of absorption by the aerosol within the atmosphere. Using these simple techniques, we calculate the changes caused by models for the naturally occurring tropospheric aerosol in a zonal mean energy balance climate model. The 2–30°C surface cooling caused by the background aerosol is comparable in magnitude but opposite in sign to the temperature changes brought about by the current atmospheric concentrations of N20 and CH4 and by a doubling of CO2. The model results also indicate that even though the background aerosol may decrease the planetary albedo at high latitudes, it causes cooling at all latitudes. We also use the simple techniques to calculate the influence of dust on the planetary albedo of a desert. Here we demonstrate that the interaction of the aerosol scattering with the angular dependence of the surface reflectivity strongly influences the planetary albedo.
0
Paper
Citation367
0
Save
0

Climate Change: An Appraisal of Atmospheric Feedback Mechanisms Employing Zonal Climatology

R. CessOct 1, 1976
The sensitivity of the earth's surface temperature to factors which can induce long-term climate change, such as a variation in solar constant, is estimated by employing two readily observable climate changes. One is the latitudinal change in annual mean climate, for which an interpretation of climatological data suggests that cloud amount is not a significant climate feedback mechanism, irrespective of how cloud amount might depend upon surface temperature, since there are compensating changes in both the solar and infrared optical properties of the atmosphere. It is further indicated that all other atmospheric feedback mechanisms, resulting, for example, from temperature-induced changes in water vapor amount, cloud altitude and lapse rate, collectively double the sensitivity of global surface temperature to a change in solar constant. The same conclusion is reached by considering a second type of climate change, that associated with seasonal variations for a given latitude zone. The seasonal interpretation further suggests that cloud amount feedback is unimportant zonally as well as globally. Application of the seasonal data required a correction for what appears to be an important seasonal feedback mechanism. This is attributed to a variability in cloud albedo due to seasonal changes in solar zenith angle. No attempt was made to individually interpret the collective feedback mechanisms which contribute to the doubling in surface temperature sensitivity. It is suggested, however, that the conventional assumption of fixed relative humidity for describing feedback due to water vapor amount might not be as applicable as is generally believed. Climate models which additionally include ice-albedo feedback are discussed within the framework of the present results.
0
Paper
Citation295
0
Save