MS
Markus Seifert
Author with expertise in Genetic and Clinical Aspects of Hemoglobin Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
1,350
h-index:
35
/
i10-index:
66
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Regulation of iron homeostasis in anemia of chronic disease and iron deficiency anemia: diagnostic and therapeutic implications

Igor Theurl et al.Mar 18, 2009
Abstract The anemia of chronic disease (ACD) is characterized by macrophage iron retention induced by cytokines and the master regulator hepcidin. Hepcidin controls cellular iron efflux on binding to the iron export protein ferroportin. Many patients, however, present with both ACD and iron deficiency anemia (ACD/IDA), the latter resulting from chronic blood loss. We used a rat model of ACD resulting from chronic arthritis and mimicked ACD/IDA by additional phlebotomy to define differing iron-regulatory pathways. Iron retention during inflammation occurs in macrophages and the spleen, but not in the liver. In rats and humans with ACD, serum hepcidin concentrations are elevated, which is paralleled by reduced duodenal and macrophage expression of ferroportin. Individuals with ACD/IDA have significantly lower hepcidin levels than ACD subjects, and ACD/IDA persons, in contrast to ACD subjects, were able to absorb dietary iron from the gut and to mobilize iron from macrophages. Circulating hepcidin levels affect iron traffic in ACD and ACD/IDA and are more responsive to the erythropoietic demands for iron than to inflammation. Hepcidin determination may aid to differentiate between ACD and ACD/IDA and in selecting appropriate therapy for these patients.
0
Citation393
0
Save
0

On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver

Igor Theurl et al.Jul 18, 2016
Damaged erythrocytes accumulate in various pathological conditions, such as hemolytic anemia, anemia of inflammation, and sickle cell disease. In mice challenged with damaged erythorcytes, a monocyte subset migrates to the liver (but not to the spleen), and this subset differentiates into a transient macrophage population that removes the damaged erythrocytes, thus preventing organ damage. Iron is an essential component of the erythrocyte protein hemoglobin and is crucial to oxygen transport in vertebrates. In the steady state, erythrocyte production is in equilibrium with erythrocyte removal1. In various pathophysiological conditions, however, erythrocyte life span is compromised severely, which threatens the organism with anemia and iron toxicity2,3. Here we identify an on-demand mechanism that clears erythrocytes and recycles iron. We show that monocytes that express high levels of lymphocyte antigen 6 complex, locus C1 (LY6C1, also known as Ly-6C) ingest stressed and senescent erythrocytes, accumulate in the liver via coordinated chemotactic cues, and differentiate into ferroportin 1 (FPN1, encoded by SLC40A1)-expressing macrophages that can deliver iron to hepatocytes. Monocyte-derived FPN1+Tim-4neg macrophages are transient, reside alongside embryonically derived T cell immunoglobulin and mucin domain containing 4 (Timd4, also known as Tim-4)high Kupffer cells (KCs), and depend on the growth factor Csf1 and the transcription factor Nrf2 (encoded by Nfe2l2). The spleen, likewise, recruits iron-loaded Ly-6Chigh monocytes, but these do not differentiate into iron-recycling macrophages, owing to the suppressive action of Csf2. The accumulation of a transient macrophage population in the liver also occurs in mouse models of hemolytic anemia, anemia of inflammation, and sickle cell disease. Inhibition of monocyte recruitment to the liver during stressed erythrocyte delivery leads to kidney and liver damage. These observations identify the liver as the primary organ that supports rapid erythrocyte removal and iron recycling, and uncover a mechanism by which the body adapts to fluctuations in erythrocyte integrity.
0
Citation358
0
Save