HG
Hongshuang Guo
Author with expertise in Wearable Nanogenerator Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
1,238
h-index:
30
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0
0

A Multifunctional Pro‐Healing Zwitterionic Hydrogel for Simultaneous Optical Monitoring of pH and Glucose in Diabetic Wound Treatment

Yingnan Zhu et al.Nov 14, 2019
Abstract Diabetic ulcer is the most common kind of chronic wound worldwide. Though great efforts have been devoted, diabetic ulcer still remains as a challenge that requires constant monitoring and management. In this work, a multifunctional zwitterionic hydrogel is developed to simultaneously detect two fluctuant wound parameters, pH and glucose level, to monitor the diabetic wound status. A pH indicator dye (phenol red) and two glucose sensing enzymes, glucose oxidase (GOx) and horseradish peroxidase (HRP), are encapsulated in the anti‐biofouling and biocompatible zwitterionic poly‐carboxybetaine (PCB) hydrogel matrix. The visible images are collected by a smartphone and transformed into RGB signals to quantify the wound parameters. Results show that the activity and stability of both two enzymes are improved within PCB hydrogel, and the K cat / K m value of PCB‐HRP is ≈5.5 fold of free HRP in artificial wound exudate. This novel wound dressing can successfully monitor the pH range of 4–8 and glucose level of 0.1–10 × 10 −3 m . Meanwhile, it also provides a moist healing environment that can promote diabetic wound healing. This multifunctional wound dressing may open vistas in chronic wound management and guide the diabetes treatment in clinical applications.
0

Zwitterionic Osmolyte‐Based Hydrogels with Antifreezing Property, High Conductivity, and Stable Flexibility at Subzero Temperature

Xiaojie Sui et al.Dec 13, 2019
Abstract Conductive hydrogels have emerged as fascinating materials applied in flexible electronics because of their integrated conductivity and mechanical flexibility. However, the large amounts of water in conductive hydrogels inevitably freeze at subzero temperature, causing a reduction of their ionic transport ability and elasticity. Herein, the bioinspired antifreezing agents—zwitterionic osmolytes (e.g., betaine, proline) are first proposed to prevent ammonium chloride‐containing Ca‐alginate/polyacrylamide hydrogels from freezing. With a facile one‐pot solvent displacement method, the zwitterionic osmolytes can displace the water molecules inside the hydrogels. Due to the excellent freeze tolerance of zwitterionic osmolytes, the resulting zwitterionic osmolyte‐based hydrogels exhibit outstanding ionic conductivity (up to ≈2.7 S m −1 ) at −40 °C, which exceeds the conductivities of most reported conductive hydrogels. Meanwhile, they present stable mechanical flexibility over a wide temperature range (−40 to 25 °C). More importantly, two types of the resulting hydrogel‐based flexible electronics, including a capacitive sensor and a resistive sensor, can maintain their response function at −40 °C. This work offers a new solution to fabricate conductive hydrogels with antifreezing ability, which can broaden the working temperature range of flexible electronics.