Megan HagenauerVerified
Verified Account
Verified
Assistant Scientist in Neuroscience & Bioinformatics at University of Michigan
Neuroscience PhD '10, University of Michigan - Ann Arbor
+ 1 more
Member for 10 days
I am a professional neuroscientist and data analyst within the Michigan Neuroscience Institute at the University of Michigan. I specialize in analyzing high dimensional data, with a particular interest in genomics as well as noisy and confounded experimental designs. My daily work involves quantitat...
Show more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
1
Publications:
55
(65% Open Access)
Cited by:
1,897
h-index:
17
/
i10-index:
24
Reputation
Molecular Biology
63%
Neurology
59%
Social Psychology
58%
Show more
How is this calculated?
Publications
1

Circadian patterns of gene expression in the human brain and disruption in major depressive disorder

Jun Li et al.May 13, 2013
+13
F
B
J
A cardinal symptom of major depressive disorder (MDD) is the disruption of circadian patterns. However, to date, there is no direct evidence of circadian clock dysregulation in the brains of patients who have MDD. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain were difficult to characterize. Here, we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-h cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ("controls") and 34 patients with MDD. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, nucleus accumbens, and cerebellum. Several hundred transcripts in each region showed 24-h cyclic patterns in controls, and >100 transcripts exhibited consistent rhythmicity and phase synchrony across regions. Among the top-ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERBa), DBP, BHLHE40 (DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in the brains of patients with MDD due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This transcriptome-wide analysis of the human brain demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggests potentially important molecular targets for treatment of mood disorders.
1

Adolescent Changes in the Homeostatic and Circadian Regulation of Sleep

Megan Hagenauer et al.Jan 1, 2009
M
T
J
M
Sleep deprivation among adolescents is epidemic. We argue that this sleep deprivation is due in part to pubertal changes in the homeostatic and circadian regulation of sleep. These changes promote a delayed sleep phase that is exacerbated by evening light exposure and incompatible with aspects of modern society, notably early school start times. In this review of human and animal literature, we demonstrate that delayed sleep phase during puberty is likely a common phenomenon in mammals, not specific to human adolescents, and we provide insight into the mechanisms underlying this phenomenon.
1

Post-mortem molecular profiling of three psychiatric disorders

Ryne Ramaker et al.Jul 28, 2017
+17
B
K
R
Psychiatric disorders are multigenic diseases with complex etiology that contribute significantly to human morbidity and mortality. Although clinically distinct, several disorders share many symptoms, suggesting common underlying molecular changes exist that may implicate important regulators of pathogenesis and provide new therapeutic targets.We performed RNA sequencing on tissue from the anterior cingulate cortex, dorsolateral prefrontal cortex, and nucleus accumbens from three groups of 24 patients each diagnosed with schizophrenia, bipolar disorder, or major depressive disorder, and from 24 control subjects. We identified differentially expressed genes and validated the results in an independent cohort. Anterior cingulate cortex samples were also subjected to metabolomic analysis. ChIP-seq data were used to characterize binding of the transcription factor EGR1.We compared molecular signatures across the three brain regions and disorders in the transcriptomes of post-mortem human brain samples. The most significant disease-related differences were in the anterior cingulate cortex of schizophrenia samples compared to controls. Transcriptional changes were assessed in an independent cohort, revealing the transcription factor EGR1 as significantly down-regulated in both cohorts and as a potential regulator of broader transcription changes observed in schizophrenia patients. Additionally, broad down-regulation of genes specific to neurons and concordant up-regulation of genes specific to astrocytes was observed in schizophrenia and bipolar disorder patients relative to controls. Metabolomic profiling identified disruption of GABA levels in schizophrenia patients.We provide a comprehensive post-mortem transcriptome profile of three psychiatric disorders across three brain regions. We highlight a high-confidence set of independently validated genes differentially expressed between schizophrenia and control patients in the anterior cingulate cortex and integrate transcriptional changes with untargeted metabolite profiling.
1
Citation162
0
Save
1

The neuroendocrine control of the circadian system: Adolescent chronotype

Megan Hagenauer et al.May 23, 2012
T
M
Scientists, public health and school officials are paying growing attention to the mechanism underlying the delayed sleep patterns common in human adolescents. Data suggest that a propensity towards evening chronotype develops during puberty, and may be caused by developmental alterations in internal daily timekeeping. New support for this theory has emerged from recent studies which show that pubertal changes in chronotype occur in many laboratory species similar to human adolescents. Using these species as models, we find that pubertal changes in chronotype differ by sex, are internally generated, and driven by reproductive hormones. These chronotype changes are accompanied by alterations in the fundamental properties of the circadian timekeeping system, including endogenous rhythm period and sensitivity to environmental time cues. After comparing the developmental progression of chronotype in different species, we propose a theory regarding the ecological relevance of adolescent chronotype, and provide suggestions for improving the sleep of human adolescents.
1

Adolescent sleep patterns in humans and laboratory animals

Megan Hagenauer et al.Jul 1, 2013
T
M
This article is part of a Special Issue “Puberty and Adolescence”. One of the defining characteristics of adolescence in humans is a large shift in the timing and structure of sleep. Some of these changes are easily observable at the behavioral level, such as a shift in sleep patterns from a relatively morning to a relatively evening chronotype. However, there are equally large changes in the underlying architecture of sleep, including a > 60% decrease in slow brain wave activity, which may reflect cortical pruning. In this review we examine the developmental forces driving adolescent sleep patterns using a cross-species comparison. We find that behavioral and physiological sleep parameters change during adolescence in non-human mammalian species, ranging from primates to rodents, in a manner that is often hormone-dependent. However, the overt appearance of these changes is species-specific, with polyphasic sleepers, such as rodents, showing a phase-advance in sleep timing and consolidation of daily sleep/wake rhythms. Using the classic two-process model of sleep regulation, we demonstrate via a series of simulations that many of the species-specific characteristics of adolescent sleep patterns can be explained by a universal decrease in the build-up and dissipation of sleep pressure. Moreover, and counterintuitively, we find that these changes do not necessitate a large decrease in overall sleep need, fitting the adolescent sleep literature. We compare these results to our previous review detailing evidence for adolescent changes in the regulation of sleep by the circadian timekeeping system (Hagenauer and Lee, 2012), and suggest that both processes may be responsible for adolescent sleep patterns.
1
Citation94
0
Save
1

Inference of cell type content from human brain transcriptomic datasets illuminates the effects of age, manner of death, dissection, and psychiatric diagnosis

Megan Hagenauer et al.Jul 17, 2018
+10
J
A
M
Psychiatric illness is unlikely to arise from pathology occurring uniformly across all cell types in affected brain regions. Despite this, transcriptomic analyses of the human brain have typically been conducted using macro-dissected tissue due to the difficulty of performing single-cell type analyses with donated post-mortem brains. To address this issue statistically, we compiled a database of several thousand transcripts that were specifically-enriched in one of 10 primary cortical cell types in previous publications. Using this database, we predicted the relative cell type content for 833 human cortical samples using microarray or RNA-Seq data from the Pritzker Consortium (GSE92538) or publicly-available databases (GSE53987, GSE21935, GSE21138, CommonMind Consortium). These predictions were generated by averaging normalized expression levels across transcripts specific to each cell type using our R-package BrainInABlender (validated and publicly-released on github). Using this method, we found that the principal components of variation in the datasets strongly correlated with the predicted neuronal/glial content of the samples. This variability was not simply due to dissection–the relative balance of brain cell types appeared to be influenced by a variety of demographic, pre- and post-mortem variables. Prolonged hypoxia around the time of death predicted increased astrocytic and endothelial gene expression, illustrating vascular upregulation. Aging was associated with decreased neuronal gene expression. Red blood cell gene expression was reduced in individuals who died following systemic blood loss. Subjects with Major Depressive Disorder had decreased astrocytic gene expression, mirroring previous morphometric observations. Subjects with Schizophrenia had reduced red blood cell gene expression, resembling the hypofrontality detected in fMRI experiments. Finally, in datasets containing samples with especially variable cell content, we found that controlling for predicted sample cell content while evaluating differential expression improved the detection of previously-identified psychiatric effects. We conclude that accounting for cell type can greatly improve the interpretability of transcriptomic data.
1
Citation64
0
Save
1

Fibroblast growth factor 9 is a novel modulator of negative affect

Elyse Aurbach et al.Sep 8, 2015
+12
C
E
E
Both gene expression profiling in postmortem human brain and studies using animal models have implicated the fibroblast growth factor (FGF) family in affect regulation and suggest a potential role in the pathophysiology of major depressive disorder (MDD). FGF2, the most widely characterized family member, is down-regulated in the depressed brain and plays a protective role in rodent models of affective disorders. By contrast, using three microarray analyses followed by quantitative RT-PCR confirmation, we show that FGF9 expression is up-regulated in the hippocampus of individuals with MDD, and that FGF9 expression is inversely related to the expression of FGF2. Because little is known about FGF9's function in emotion regulation, we used animal models to shed light on its potential role in affective function. We found that chronic social defeat stress, an animal model recapitulating some aspects of MDD, leads to a significant increase in hippocampal FGF9 expression, paralleling the elevations seen in postmortem human brain tissue. Chronic intracerebroventricular administration of FGF9 increased both anxiety- and depression-like behaviors. In contrast, knocking down FGF9 expression in the dentate gyrus of the hippocampus using a lentiviral vector produced a decrease in FGF9 expression and ameliorated anxiety-like behavior. Collectively, these results suggest that high levels of hippocampal FGF9 play an important role in the development or expression of mood and anxiety disorders. We propose that the relative levels of FGF9 in relation to other members of the FGF family may prove key to understanding vulnerability or resilience in affective disorders.
1

Period gene expression in the diurnal degu (Octodon degus) differs from the nocturnal laboratory rat (Rattus norvegicus)

Andrew Vosko et al.Nov 27, 2008
T
D
M
A
Recent data suggest that both nocturnal and diurnal mammals generate circadian rhythms using similarly phased feedback loops involving Period genes in the suprachiasmatic nuclei (SCN) of the hypothalamus. These molecular oscillations also exist in the brain outside of the SCN, but the relationship between SCN and extra-SCN oscillations is unclear. We hypothesized that a comparison of “diurnal” and “nocturnal” central nervous system Per rhythms would uncover differences in the underlying circadian mechanisms between these two chronotypes. Therefore, this study compared the 24-h oscillatory patterns of Per1 and Per2 mRNA in the SCN and putative striatum and cortex of Octodon degus (degu), a diurnal hystricognath rodent, with those of the nocturnal laboratory rat, Rattus norvegicus. The brains of adult male degus and rats were collected at 2-h intervals across 24 h in entrained light-dark and constant darkness conditions, and sections were analyzed via in situ hybridization. In the SCN, degu Per1 and Per2 hybridization signal exhibited 24-h oscillatory patterns similar in phasing to those seen in other rodents, with peaks occurring during the light period and troughs during the dark period. However, Per1 remained elevated for five fewer hours in the degu than in the rat, and Per2 remained elevated for two fewer hours in the degu. In brain areas outside of the SCN, the phase of Per2 hybridization signal rhythms in the degu were 180° out of phase with those found in the rat, and Per1 hybridization signal lacked significant rhythmicity. These results suggest that, while certain basic components of the transcriptional-translational feedback loop generating circadian rhythms are similar in diurnal and nocturnal mammals, there are variations that may reflect adaptations to circadian niche.
1
Citation44
0
Save
1

Changes in circadian rhythms during puberty in Rattus norvegicus: Developmental time course and gonadal dependency

Megan Hagenauer et al.Mar 16, 2011
+4
B
A
M
During puberty, humans develop a later chronotype, exhibiting a phase-delayed daily rest/activity rhythm. The purpose of this study was to determine: 1) whether similar changes in chronotype occur during puberty in a laboratory rodent species, 2) whether these changes are due to pubertal hormones affecting the circadian timekeeping system. We tracked the phasing and distribution of wheel-running activity rhythms during post-weaning development in rats that were gonadectomized before puberty or left intact. We found that intact peripubertal rats had activity rhythms that were phase-delayed relative to adults. Young rats also exhibited a bimodal nocturnal activity distribution. As puberty progressed, bimodality diminished and late-night activity phase-advanced until it consolidated with early-night activity. By late puberty, intact rats showed a strong, unimodal rhythm that peaked at the beginning of the night. These pubertal changes in circadian phase were more pronounced in males than females. Increases in gonadal hormones during puberty partially accounted for these changes, as rats that were gonadectomized before puberty demonstrated smaller phase changes than intact rats and maintained ultradian rhythms into adulthood. We investigated the role of photic entrainment by comparing circadian development under constant and entrained conditions. We found that the period (τ) of free-running rhythms developed sex differences during puberty. These changes in τ did not account for pubertal changes in entrained circadian phase, as the consolidation of activity at the beginning of the subjective night persisted under constant conditions in both sexes. We conclude that the circadian system continues to develop in a hormone-sensitive manner during puberty.
1
Citation42
0
Save
1

Circadian organization of the diurnal Caviomorph rodent,Octodon degus

Megan Hagenauer et al.Mar 5, 2008
T
M
Abstract The Octodon degus, or degu, is an excellent animal model for studying the theoretical and neural underpinnings of diurnality. The power of this model comes from their unique evolutionary lineage, long lives, and relative ease of care in the laboratory for a non-domesticated species. We have summarized the field and laboratory data indicating the critical variables that influence the degus' phase preference and the possible mechanisms for the phase flexibility observed in the field and laboratory. We also review studies examining the physiology and anatomy of light and non-photic inputs to the degu circadian system and studies of the circadian pacemaker itself, with particular emphasis placed on characteristics that appear to be convergent adaptations to a diurnal niche. Finally, we begin to seek the origin for the diurnally-phased activity output of the degu, although we conclude that significant work remains to be done. Keywords: chronotypeday-activeHystricognathiperclock genesmasking Acknowledgements We wish to thank Dr. Refinetti and Dr. Waterhouse for inviting us to write this review and for providing valuable feedback on an earlier draft. We also thank the many students who have helped collect data about circadian function in the degu during the past 16 years. They include Drs. Susan Labyak, Namni Goel, Daniel Hummer, and Jennifer Mohawk. Other students that made important contributions include Marcia Governale, Jamie Perryman, and Andrew Vosko. We also thank our animal care staff, Kathy Gimson, Julie Stewlow, and Jim Donner, for their years of excellent care; and the lab managers, Amy Young and Blair Sutton, who helped figure out how to make degus into happy breeders. We wish to recognize the financial support for the research with degus from NIMH, NHLB, NSF, and the University of Michigan; and the support of MHH by the Reproductive Science Program T32 Training grant from NICHD. Notes 1. Chronotype flexibility is not unique to degus, and an extensive review by Kronfeld-Schor and Dayan (2003 Kronfeld-Schor, N and Dayan, T. 2003. Partitioning of time as ecological resource. Annu Rev Ecol Evol Syst, 34: 153–181. [Crossref], [Web of Science ®] , [Google Scholar]) discusses the many ecological variables that may lead to such adaptations. 2. A recent study examining the masking effects of melatonin administration on body temperature in degus found that melatonin produced a hypothermic response in degus, regardless of diurnal or nocturnal chronotype (Vivanco et al. 2007). Therefore, at least some masking responses are definitively the same, and diurnal-typical, in both chronotypes.
1
Paper
Citation39
0
Save
Load More