Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
ES
Eugene Serabyn
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2,148
h-index:
62
/
i10-index:
237
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

THE GALACTIC CENTER ENVIRONMENT

Mark Morris et al.Sep 1, 1996
▪ Abstract The central half kiloparsec region of our Galaxy harbors a variety of phenomena unique to the central environment. This review discusses the observed structure and activity of the interstellar medium in this region in terms of its inevitable inflow toward the center of the Galactic gravitational potential well. A number of dissipative processes lead to a strong concentration of gas into a “Central Molecular Zone” of about 200-pc radius, in which the molecular medium is characterized by large densities, large velocity dispersions, high temperatures, and apparently strong magnetic fields. The physical state of the gas and the resultant star formation processes occurring in this environment are therefore quite unlike those occurring in the large-scale disk. Gas not consumed by star formation either enters a hot X ray–emitting halo and is lost as a thermally driven galactic wind or continues moving inward, probably discontinuously, through the domain of the few parsec-sized circumnuclear disks and eventually into the central parsec. There, the central radio source SgrA * currently accepts only a tiny fraction of the inflowing material, likely as a result of a limit cycle wherein the continual inflow of matter provokes star formation, which in turn can temporarily halt the inflow via mass-outflow winds.
0

Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications

J. Pardo et al.Jan 1, 2001
We present a model of the longwave atmospheric spectrum that improves in many respects widely used older models such as the microwave propagation model (MPM), since it is based on broadband measurements and calculations. According to our data, the model is fully applicable from 0 to 2 THz while including lines up to 10 THz. Its primary goal is to simulate the millimeter/submillimeter region accessible from the ground (frequencies up to /spl sim/2 THz at most, with a few windows between 1 and 2 THz accessible only under exceptional conditions at very dry sites). Line-by-line calculations of the absorption are performed using a line database generated from the latest available spectroscopic constants for all relevant atmospheric species. The collisional line widths are obtained from published laboratory data. The excess of absorption in the longwave range that cannot be explained by the line spectrum is modeled by introducing two different continuum-like terms based on FTS measurements between 170 and 1100 GHz: collision-induced absorption of the dry atmosphere due to transient dipoles in symmetric molecules (N/sub 2/ and O/sub 2/) and continuum-like water vapor opacity. All H/sub 2/O lines up to 10 THz are included in order to correctly account for the entire H/sub 2/O far-wing opacity below 2 THz for a given line-shape. Hence, this contribution does not need to be part of a pseudocontinuum term below that frequency cutoff (still necessary, as shown in this paper) in contrast to other models used to date. Phase delays near H/sub 2/O and O/sub 2/ resonances are also important for ground-based astronomy since they affect interferometric phase. The frequency-dependent dispersive phase delay function is formally related to the absorption line shape via the Kramers-Kronig dispersion theory, and this relation has been used for modeling those delays. Precise calculations of phase delays are essential for the future Atacama large millimeter array (ALMA) project. A software package called atmospheric transmission at microwaves (ATM) has been developed to provide the radioastronomy and aeronomy communities with an updated tool to compute the atmospheric spectrum in clear-sky conditions for various scientific applications. We use this model to provide detailed simulations of atmospheric transmission and phase dispersion for several sites suitable for submillimeter astronomy.
0

The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales

Nemanja Jovanović et al.Aug 31, 2015
The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multiband instrument which makes use of light from 600 to 2500 nm, allowing for coronagraphic direct exoplanet imaging of the inner 3λ/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well-corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase-induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1λ/D. Noncommon path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid-2016) can take deeper exposures and/or perform angular, spectral, and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable subdiffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.
0

DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY

Takayuki Muto et al.Mar 14, 2012
We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r~46AU, our observations reveal the presence of scattered light components as close as 0.2" (~28AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0.5" (~70AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h~0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.
0

DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504

Masayuki Kuzuhara et al.Aug 8, 2013
Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800--1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of ~30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510 [+30, -20] K) and has a bluer color (J-H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.