AN
Abbass Nasser
Author with expertise in Network Intrusion Detection and Defense Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1
h-index:
13
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Securing IoT Networks from DDoS Attacks Using a Temporary Dynamic IP Strategy

Ahmad Fawal et al.Jul 1, 2024
The progression of the Internet of Things (IoT) has brought about a complete transformation in the way we interact with the physical world. However, this transformation has brought with it a slew of challenges. The advent of intelligent machines that can not only gather data for analysis and decision-making, but also learn and make independent decisions has been a breakthrough. However, the low-cost requirement of IoT devices requires the use of limited resources in processing and storage, which typically leads to a lack of security measures. Consequently, most IoT devices are susceptible to security breaches, turning them into "Bots" that are used in Distributed Denial of Service (DDoS) attacks. In this paper, we propose a new strategy labeled "Temporary Dynamic IP" (TDIP), which offers effective protection against DDoS attacks. The TDIP solution rotates Internet Protocol (IP) addresses frequently, creating a significant deterrent to potential attackers. By maintaining an "IP lease-time" that is short enough to prevent unauthorized access, TDIP enhances overall system security. Our testing, conducted via OMNET++, demonstrated that TDIP was highly effective in preventing DDoS attacks and, at the same time, improving network efficiency and IoT network protection.
0

Markov-Modulated Poisson Process Modeling for Machine-to-Machine Heterogeneous Traffic

Ahmad Fawal et al.Sep 23, 2024
Theoretical mathematics is a key evolution factor of artificial intelligence (AI). Nowadays, representing a smart system as a mathematical model helps to analyze any system under development and supports different case studies found in real life. Additionally, the Markov chain has shown itself to be an invaluable tool for decision-making systems, natural language processing, and predictive modeling. In an Internet of Things (IoT), Machine-to-Machine (M2M) traffic necessitates new traffic models due to its unique pattern and different goals. In this context, we have two types of modeling: (1) source traffic modeling, used to design stochastic processes so that they match the behavior of physical quantities of measured data traffic (e.g., video, data, voice), and (2) aggregated traffic modeling, which refers to the process of combining multiple small packets into a single packet in order to reduce the header overhead in the network. In IoT studies, balancing the accuracy of the model while managing a large number of M2M devices is a heavy challenge for academia. One the one hand, source traffic models are more competitive than aggregated traffic models because of their dependability. However, their complexity is expected to make managing the exponential growth of M2M devices difficult. In this paper, we propose to use a Markov-Modulated Poisson Process (MMPP) framework to explore Human-to-Human (H2H) traffic and M2M heterogeneous traffic effects. As a tool for stochastic processes, we employ Markov chains to characterize the coexistence of H2H and M2M traffic. Using the traditional evolved Node B (eNodeB), our simulation results show that the network’s service completion rate will suffer significantly. In the worst-case scenario, when an accumulative storm of M2M requests attempts to access the network simultaneously, the degradation reaches 8% as a completion task rate. However, using our “Coexistence of Heterogeneous traffic Analyzer and Network Architecture for Long term evolution” (CHANAL) solution, we can achieve a service completion rate of 96%.