DO
Daohui Ou
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
1,805
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Two-Dimensional Porous Carbon-Modified Separator for High-Energy-Density Li-S Batteries

Fei Pei et al.Dec 28, 2017
Lithium-sulfur (Li-S) batteries are a promising next-generation energy-storage system due to their high theoretical energy density and low cost. However, the rapid capacity fading of high-sulfur-loading cathodes caused by the shuttle of soluble polysulfide intermediates between two electrodes heavily hinders the development of high-energy-density Li-S batteries. We develop in this work a powerful functional separator to suppress the polysulfide shuttle by coating two-dimensional nitrogen-doped porous carbon nanosheets on one surface of a commercial polypropylene separator. The high surface area, high content of nitrogen dopants, and close-packing laminar structure of the two-dimensional porous carbon nanosheets make them ideal to fabricate a lightweight and thin separator for high-energy-density Li-S batteries. The separator reported in this work endows the high-sulfur-loading cathodes made of commercial carbon materials with significantly enhanced performances that are comparable with or even superior to the state-of-the-art sulfur composite cathodes, opening up new opportunities for designing practical high-energy-density Li-S batteries.
0

Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries

Fei Pei et al.Sep 1, 2017
How to exert the energy density advantage is a key link in the development of lithium-sulfur batteries. Therefore, the performance degradation of high-sulfur-loading cathodes becomes an urgent problem to be solved at present. In addition, the volumetric capacities of high-sulfur-loading cathodes are still at a low level compared with their areal capacities. Aiming at these issues, two-dimensional carbon yolk-shell nanosheet is developed herein to construct a novel self-supporting sulfur cathode. The cathode with high-sulfur loading of 5 mg cm-2 and sulfur content of 73 wt% not only delivers an excellent rate performance and cycling stability, but also provides a favorable balance between the areal (5.7 mAh cm-2) and volumetric (1330 mAh cm-3) capacities. Remarkably, an areal capacity of 11.4 mAh cm-2 can be further achieved by increasing the sulfur loading from 5 to 10 mg cm-2. This work provides a promising direction for high-energy-density lithium-sulfur batteries.One of the challenges facing lithium-sulfur batteries is to develop cathodes with high mass and high volume loading. Here the authors show that two-dimensional carbon yolk-shell nanosheets are promising sulfur host materials, enabling stable battery cells with high energy density.
0

High-Efficiency, Hysteresis-Less, UV-Stable Perovskite Solar Cells with Cascade ZnO–ZnS Electron Transport Layer

Ruihao Chen et al.Dec 10, 2018
Perovskite solar cells (PSCs) have reached certified efficiencies of up to 23.7% but suffered from frailness and instability when exposed to ambient atmosphere. Zinc oxide (ZnO), when used as electron transport layer (ETL) on PSCs, gives rise to excellent electronic, optic, and photonic properties, yet the Lewis basic nature of ZnO surface leads to deprotonation of the perovskite layer, resulting in serious degradation of PSCs using ZnO as ETL. Here, we report a simple but effective strategy to convert ZnO surface into ZnS at the ZnO/perovskite interface by sulfidation. The sulfide on ZnO-ZnS surface binds strongly with Pb2+ and creates a novel pathway of electron transport to accelerate electron transfer and reduce interfacial charge recombination, yielding a champion efficiency of 20.7% with improved stability and no appreciable hysteresis. The model devices modified with sulfide maintained 88% of their initial performance for 1000 h under storage condition and 87% for 500 h under UV radiation. ZnS is demonstrated to act as both a cascade ETL and a passivating layer for enhancing the performance of PSCs.