JH
Jun Huang
Author with expertise in Internet of Things and Edge Computing
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(0% Open Access)
Cited by:
1,125
h-index:
30
/
i10-index:
85
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Intelligent Edge Computing in Internet of Vehicles: A Joint Computation Offloading and Caching Solution

Zhaolong Ning et al.Jun 5, 2020
Recently, Internet of Vehicles (IoV) has become one of the most active research fields in both academic and industry, which exploits resources of vehicles and Road Side Units (RSUs) to execute various vehicular applications. Due to the increasing number of vehicles and the asymmetrical distribution of traffic flows, it is essential for the network operator to design intelligent offloading strategies to improve network performance and provide high-quality services for users. However, the lack of global information and the time-variety of IoVs make it challenging to perform effective offloading and caching decisions under long-term energy constraints of RSUs. Since Artificial Intelligence (AI) and machine learning can greatly enhance the intelligence and the performance of IoVs, we push AI inspired computing, caching and communication resources to the proximity of smart vehicles, which jointly enable RSU peer offloading, vehicle-to-RSU offloading and content caching in the IoV framework. A Mix Integer Non-Linear Programming (MINLP) problem is formulated to minimize total network delay, consisting of communication delay, computation delay, network congestion delay and content downloading delay of all users. Then, we develop an online multi-decision making scheme (named OMEN) by leveraging Lyapunov optimization method to solve the formulated problem, and prove that OMEN achieves near-optimal performance. Leveraging strong cognition of AI, we put forward an imitation learning enabled branch-and-bound solution in edge intelligent IoVs to speed up the problem solving process with few training samples. Experimental results based on real-world traffic data demonstrate that our proposed method outperforms other methods from various aspects.
0

Mobile Edge Computing-Enabled Internet of Vehicles: Toward Energy-Efficient Scheduling

Zhaolong Ning et al.Aug 2, 2019
Although modern transportation systems facilitate the daily life of citizens, the ever-increasing energy consumption and air pollution challenge the establishment of green cities. Current studies on green IoV generally concentrate on energy management of either battery-enabled RSUs or electric vehicles. However, computing tasks and load balancing among RSUs have not been fully investigated. In order to satisfy heterogeneous requirements of communication, computation and storage in IoVs, this article constructs an energy-efficient scheduling framework for MEC-enabled IoVs to minimize the energy consumption of RSUs under task latency constraints. Specifically, a heuristic algorithm is put forward by jointly considering task scheduling among MEC servers and downlink energy consumption of RSUs. To the best of our knowledge, this is a prior work to focus on the energy consumption control issues of MEC-enabled RSUs. Performance evaluations demonstrate the effectiveness of our framework in terms of energy consumption, latency and task blocking possibility. Finally, this article elaborates some major challenges and open issues toward energy-efficient scheduling in IoVs.
0
Paper
Citation239
0
Save