HomeCirculationVol. 129, No. 21Response to Letter Regarding Article "Inositol 1,4,5-Trisphosphate Receptors and Human Left Ventricular Myocytes" Free AccessLetterPDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toFree AccessLetterPDF/EPUBResponse to Letter Regarding Article "Inositol 1,4,5-Trisphosphate Receptors and Human Left Ventricular Myocytes" Sergio Signore, MS, Andrea Sorrentino, MS, João Ferreira-Martins, MD, PhD, Ramaswamy Kannappan, PhD, Mehrdad Shafaie, BS, Fabio Del Ben, MD, Kazuya Isobe, MD, PhD, Christian Arranto, MD, Ewa Wybieralska, PhD, Andrew Webster, BS, Fumihiro Sanada, MD, PhD, Barbara Ogórek, PhD, Hanqiao Zheng, PhD and Xiaoxia Liu, MS Federica del Monte, MD, PhD David A. D'Alessandro, MD, Oriyanhan Wunimenghe, MD and Robert E. Michler, MD Toru Hosoda, MD, PhD, Polina Goichberg, PhD, Annarosa Leri, MD, Jan Kajstura, PhD, Piero Anversa, MD and Marcello Rota, PhD Sergio SignoreSergio Signore Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Andrea SorrentinoAndrea Sorrentino Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , João Ferreira-MartinsJoão Ferreira-Martins Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Ramaswamy KannappanRamaswamy Kannappan Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Mehrdad ShafaieMehrdad Shafaie Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Fabio Del BenFabio Del Ben Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Kazuya IsobeKazuya Isobe Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Christian ArrantoChristian Arranto Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Ewa WybieralskaEwa Wybieralska Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Andrew WebsterAndrew Webster Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Fumihiro SanadaFumihiro Sanada Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Barbara OgórekBarbara Ogórek Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Hanqiao ZhengHanqiao Zheng Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA and Xiaoxia LiuXiaoxia Liu Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Federica del MonteFederica del Monte Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA David A. D'AlessandroDavid A. D'Alessandro Department of Cardiovascular and Thoracic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY , Oriyanhan WunimengheOriyanhan Wunimenghe Department of Cardiovascular and Thoracic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY and Robert E. MichlerRobert E. Michler Department of Cardiovascular and Thoracic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY Toru HosodaToru Hosoda Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Polina GoichbergPolina Goichberg Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Annarosa LeriAnnarosa Leri Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Jan KajsturaJan Kajstura Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA , Piero AnversaPiero Anversa Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA and Marcello RotaMarcello Rota Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA Originally published27 May 2014https://doi.org/10.1161/CIRCULATIONAHA.114.009347Circulation. 2014;129:e510–e511We thank Drs Heidrich and colleagues for their comments on our study discussing the role of inositol 1,4,5-trisphosphate receptors (IP3Rs) in ventricular myocytes.1 We documented that IP3Rs are present and operative in the rodent and human ventricular myocardium and that stimulation of Gαq-protein-coupled receptors promotes IP3R-mediated Ca2+ release. This adaptation provides inotropic support but favors electric instability.As pointed out by Dr Heidrich and colleagues, our report did not address the contribution of endogenous IP3R-regulatory proteins2 to the electrophysiological and contractile properties of ventricular myocytes. Specifically, they raised the possibility that chromogranin B, a sarcoplasmic reticulum Ca2+-binding protein, interacts with IP3Rs3 and modulates myocyte behavior after Gαq-protein-coupled receptor stimulation. The relationship between chromogranin B and IP3Rs may be particularly relevant to the failing heart, a condition characterized by upregulation of both chromogranin B and IP3Rs. We share this view, and additional experiments are warranted to elucidate several important aspects of IP3R activation.Consistent with the role of chromogranin B in the control of intracellular Ca2+, other regulatory mechanisms may alter IP3Rs and Ca2+ translocation in myocytes physiologically and in pathological conditions. Unpublished observations from our laboratory indicate that β-adrenergic stimulation induces IP3R-mediated Ca2+ release in cardiac progenitor cells (CPCs). In this cell class, intracellular oscillatory events originate as a consequence of the translocation of Ca2+ from the endoplasmic reticulum to the cytoplasm via IP3Rs.4 In contrast, crucial variables of myocyte Ca2+ homeostasis, voltage-dependent transmembrane Ca2+ fluxes, and ryanodine receptor Ca2+ release are not involved in this process.4 Exposure of human CPCs to the β-adrenergic agonist isoproterenol increases by ≈2-fold the fraction of cells displaying intracellular Ca2+ oscillations. These findings support the notion that IP3R channels undergo posttranslational modifications mediated by protein kinase A, a target of β-adrenergic receptor signaling.5 Myocytes are the progeny of CPCs, and similar mechanisms may be operative in both cell categories, suggesting that IP3Rs participate at distinct levels in the response of the myocardium to β-adrenergic ligands.The multiple endogenous and exogenous regulators of IP3Rs have yet to be identified, and only the integration of molecular protocols with physiological assays will provide a thorough understanding of the function of IP3Rs in the modulation of the properties of cardiomyocytes and CPCs. Whether IP3Rs are implicated not only in the initiation of CPC growth but also in lineage specification and myocyte differentiation is a critical unanswered question. However, the recognition that IP3Rs are expressed in CPCs and cardiomyocytes suggests that they may be implicated in the control of myocyte renewal during the normal wear and tear of the organ and in the repair process after myocardial injury.Sergio Signore, MSAndrea Sorrentino, MSJoão Ferreira-Martins, MD, PhDRamaswamy Kannappan, PhDMehrdad Shafaie, BSFabio Del Ben, MDKazuya Isobe, MD, PhDChristian Arranto, MDEwa Wybieralska, PhDAndrew Webster, BSFumihiro Sanada, MD, PhDBarbara Ogórek, PhDHanqiao Zheng, PhDXiaoxia Liu, MSDepartments of Anesthesia and Medicine and Division of Cardiovascular MedicineBrigham and Women's HospitalHarvard Medical SchoolBoston, MAFederica del Monte, MD, PhDCardiovascular InstituteBeth Israel Deaconess Medical CenterHarvard Medical SchoolBoston, MADavid A. D'Alessandro, MDOriyanhan Wunimenghe, MDRobert E. Michler, MDDepartment of Cardiovascular and Thoracic SurgeryMontefiore Medical CenterAlbert Einstein College of MedicineNew York, NYToru Hosoda, MD, PhDPolina Goichberg, PhDAnnarosa Leri, MDJan Kajstura, PhDPiero Anversa, MDMarcello Rota, PhDDepartments of Anesthesia and Medicine and Division of Cardiovascular MedicineBrigham and Women's HospitalHarvard Medical SchoolBoston, MASources of FundingThis work was supported by National Institute of Health grants R01 HL091021, R01 HL114346, P01 AG043353, P01 HL092868, R01 AG037495, R01 HL111183, R01 AG037490, R01 HL105532, and R37 HL081737.DisclosuresNone.References1. Signore S, Sorrentino A, Ferreira-Martins J, Kannappan R, Shafaie M, Del Ben F, Isobe K, Arranto C, Wybieralska E, Webster A, Sanada F, Ogórek B, Zheng H, Liu X, Del Monte F, D'Alessandro DA, Wunimenghe O, Michler RE, Hosoda T, Goichberg P, Leri A, Kajstura J, Anversa P, Rota M. Inositol 1,4,5-trisphosphate receptors and human left ventricular myocytes.Circulation. 2013; 128:1286–1297.LinkGoogle Scholar2. Choe CU, Ehrlich BE. The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork.Sci STKE. 2006; 2006:re15.CrossrefMedlineGoogle Scholar3. Heidrich FM, Zhang K, Estrada M, Huang Y, Giordano FJ, Ehrlich BE. Chromogranin B regulates calcium signaling, nuclear factor kappaB activity, and brain natriuretic peptide production in cardiomyocytes.Circ Res. 2008; 102:1230–1238.LinkGoogle Scholar4. Ferreira-Martins J, Rondon-Clavo C, Tugal D, Korn JA, Rizzi R, Padin-Iruegas ME, Ottolenghi S, De Angelis A, Urbanek K, Ide-Iwata N, D'Amario D, Hosoda T, Leri A, Kajstura J, Anversa P, Rota M. Spontaneous calcium oscillations regulate human cardiac progenitor cell growth.Circ Res. 2009; 105:764–774.LinkGoogle Scholar5. Wojcikiewicz RJ, Luo SG. Phosphorylation of inositol 1,4,5- trisphosphate receptors by cAMP-dependent protein kinase: type I, II, and III receptors are differentially susceptible to phosphorylation and are phosphorylated in intact cells.J Biol Chem. 1998; 273:56705677.CrossrefGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetails May 27, 2014Vol 129, Issue 21 Advertisement Article InformationMetrics © 2014 American Heart Association, Inc.https://doi.org/10.1161/CIRCULATIONAHA.114.009347PMID: 24868002 Originally publishedMay 27, 2014 PDF download Advertisement