NO
N. Omodei
Author with expertise in High-Energy Astrophysics and Particle Acceleration Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(80% Open Access)
Cited by:
3,760
h-index:
108
/
i10-index:
311
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

FERMI-LAT OBSERVATIONS OF HIGH-ENERGY γ-RAY EMISSION TOWARD THE GALACTIC CENTER

M. Ajello et al.Feb 26, 2016
The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission towards the Galactic centre (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a $15^\circ \times 15^\circ$ region about the direction of the GC, and implications for the interstellar emissions produced by cosmic ray (CR) particles interacting with the gas and radiation fields in the inner Galaxy and for the point sources detected. Specialised interstellar emission models (IEMs) are constructed that enable separation of the gamma-ray emission from the inner $\sim 1$ kpc about the GC from the fore- and background emission from the Galaxy. Based on these models, the interstellar emission from CR electrons interacting with the interstellar radiation field via the inverse Compton (IC) process and CR nuclei inelastically scattering off the gas producing gamma-rays via $\pi^0$ decays from the inner $\sim 1$ kpc is determined. The IC contribution is found to be dominant in the region and strongly enhanced compared to previous studies. A catalog of point sources for the $15^\circ \times 15^\circ$ region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy point source Catalog (1FIG). After subtracting the interstellar emission and point-source contributions from the data a residual is found that is a sub-dominant fraction of the total flux. If spatial templates that peak toward the GC are used to model the positive residual and included in the total model for the $15^\circ \times 15^\circ$ region, the agreement with the data improves, but none of the additional templates account for all of the residual structure. The spectrum of the positive residual modelled with these templates has a strong dependence on the choice of IEM. [Abridged]
0

GeV OBSERVATIONS OF STAR-FORMING GALAXIES WITH THEFERMILARGE AREA TELESCOPE

M. Ackermann et al.Aug 7, 2012
Recent detections of the starburst galaxies M82 and NGC 253 by gamma-ray telescopes suggest that galaxies rapidly forming massive stars are more luminous at gamma-ray energies compared to their quiescent relatives. Building upon those results, we examine a sample of 69 dwarf, spiral, and luminous and ultraluminous infrared galaxies at photon energies 0.1–100 GeV using 3 years of data collected by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (Fermi). Measured fluxes from significantly detected sources and flux upper limits for the remaining galaxies are used to explore the physics of cosmic rays in galaxies. We find further evidence for quasi-linear scaling relations between gamma-ray luminosity and both radio continuum luminosity and total infrared luminosity which apply both to quiescent galaxies of the Local Group and low-redshift starburst galaxies (conservative P-values ≲ 0.05 accounting for statistical and systematic uncertainties). The normalizations of these scaling relations correspond to luminosity ratios of log (L0.1–100 GeV/L1.4 GHz) = 1.7 ± 0.1(statistical) ± 0.2(dispersion) and log (L0.1–100 GeV/L8–1000 μm) = −4.3 ± 0.1(statistical) ± 0.2(dispersion) for a galaxy with a star formation rate of 1 M☉ yr−1, assuming a Chabrier initial mass function. Using the relationship between infrared luminosity and gamma-ray luminosity, the collective intensity of unresolved star-forming galaxies at redshifts 0 < z < 2.5 above 0.1 GeV is estimated to be 0.4–2.4 × 10−6 ph cm−2 s−1 sr−1 (4%–23% of the intensity of the isotropic diffuse component measured with the LAT). We anticipate that ∼10 galaxies could be detected by their cosmic-ray-induced gamma-ray emission during a 10 year Fermi mission.
0

3FHL: The Third Catalog of Hard Fermi-LAT Sources

M. Ajello et al.Sep 27, 2017
We present a catalog of sources detected above 10 GeV by the Fermi Large Area Telescope (LAT) in the first 7 years of data using the Pass 8 event-level analysis. This is the Third Catalog of Hard Fermi-LAT Sources (3FHL), containing 1556 objects characterized in the 10 GeV - 2 TeV energy range. The sensitivity and angular resolution are improved by factors of 3 and 2 relative to the previous LAT catalog at the same energies (1FHL). The vast majority of detected sources (79%) are associated with extragalactic counterparts at other wavelengths, including 16 sources located at very high redshift ($z>2$). Eight percent of the sources have Galactic counterparts and 13% are unassociated (or associated with a source of unknown nature). The high-latitude sky and the Galactic plane are observed with a flux sensitivity of 4.4 to 9.5$\times 10^{-11}$ ph cm$^{-2}$ s$^{-1}$, respectively (this is approximately 0.5% and 1% of the Crab Nebula flux above 10 GeV). The catalog includes 214 new $\gamma$-ray sources. The substantial increase in the number of photons (more than 4 times relative to 1FHL and 10 times to 2FHL) also allows us to measure significant spectral curvature for 32 sources and find flux variability for 163 of them. Furthermore, we estimate that for the same flux limit of $10^{-12}$ erg cm$^{-2}$ s$^{-1}$, the energy range above 10 GeV has twice as many sources as above 50 GeV, highlighting the importance, for future Cherenkov telescopes, of lowering the energy threshold as much as possible.
0

Incremental Fermi Large Area Telescope Fourth Source Catalog

S. Abdollahi et al.Jun 1, 2022
We present an incremental version (4FGL-DR3, for Data Release 3) of the fourth Fermi-LAT catalog of gamma-ray sources. Based on the first twelve years of science data in the energy range from 50 MeV to 1 TeV, it contains 6658 sources. The analysis improves on that used for the 4FGL catalog over eight years of data: more sources are fit with curved spectra, we introduce a more robust spectral parameterization for pulsars, and we extend the spectral points to 1 TeV. The spectral parameters, spectral energy distributions, and associations are updated for all sources. Light curves are rebuilt for all sources with 1 yr intervals (not 2 month intervals). Among the 5064 original 4FGL sources, 16 were deleted, 112 are formally below the detection threshold over 12 yr (but are kept in the list), while 74 are newly associated, 10 have an improved association, and seven associations were withdrawn. Pulsars are split explicitly between young and millisecond pulsars. Pulsars and binaries newly detected in LAT sources, as well as more than 100 newly classified blazars, are reported. We add three extended sources and 1607 new point sources, mostly just above the detection threshold, among which eight are considered identified, and 699 have a plausible counterpart at other wavelengths. We discuss degree-scale residuals to the global sky model and clusters of soft unassociated point sources close to the Galactic plane, which are possibly related to limitations of the interstellar emission model and missing extended sources.
0

THE SPECTRUM AND MORPHOLOGY OF THEFERMIBUBBLES

M. Ackermann et al.Sep 5, 2014
The Fermi bubbles are two large structures in the gamma-ray sky extending to 55° above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10° in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7σ significance. The power law with an exponential cutoff has an index of 1.9 ± 0.2 and a cutoff energy of 110 ± 50 GeV. We find that the gamma-ray luminosity of the bubbles is erg s−1. We confirm a significant enhancement of gamma-ray emission in the southeastern part of the bubbles, but we do not find significant evidence for a jet. No significant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be deg. Both inverse Compton (IC) models and hadronic models including IC emission from secondary leptons fit the gamma-ray data well. In the IC scenario, synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic field between 5 and 20 μG.
0
Citation296
0
Save
0

DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

Fabio Acero et al.Apr 1, 2016
ABSTRACT Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.
Load More