KK
Karthik Kashinath
Author with expertise in Climate Change and Variability Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1,094
h-index:
24
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Physics-informed machine learning: case studies for weather and climate modelling

Karthik Kashinath et al.Feb 15, 2021
Machine learning (ML) provides novel and powerful ways of accurately and efficiently recognizing complex patterns, emulating nonlinear dynamics, and predicting the spatio-temporal evolution of weather and climate processes. Off-the-shelf ML models, however, do not necessarily obey the fundamental governing laws of physical systems, nor do they generalize well to scenarios on which they have not been trained. We survey systematic approaches to incorporating physics and domain knowledge into ML models and distill these approaches into broad categories. Through 10 case studies, we show how these approaches have been used successfully for emulating, downscaling, and forecasting weather and climate processes. The accomplishments of these studies include greater physical consistency, reduced training time, improved data efficiency, and better generalization. Finally, we synthesize the lessons learned and identify scientific, diagnostic, computational, and resource challenges for developing truly robust and reliable physics-informed ML models for weather and climate processes. This article is part of the theme issue ‘Machine learning for weather and climate modelling’.
0
Paper
Citation363
0
Save
0

Atmospheric River Tracking Method Intercomparison Project (ARTMIP): project goals and experimental design

Christine Shields et al.Jun 20, 2018
Abstract. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is an international collaborative effort to understand and quantify the uncertainties in atmospheric river (AR) science based on detection algorithm alone. Currently, there are many AR identification and tracking algorithms in the literature with a wide range of techniques and conclusions. ARTMIP strives to provide the community with information on different methodologies and provide guidance on the most appropriate algorithm for a given science question or region of interest. All ARTMIP participants will implement their detection algorithms on a specified common dataset for a defined period of time. The project is divided into two phases: Tier 1 will utilize the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis from January 1980 to June 2017 and will be used as a baseline for all subsequent comparisons. Participation in Tier 1 is required. Tier 2 will be optional and include sensitivity studies designed around specific science questions, such as reanalysis uncertainty and climate change. High-resolution reanalysis and/or model output will be used wherever possible. Proposed metrics include AR frequency, duration, intensity, and precipitation attributable to ARs. Here, we present the ARTMIP experimental design, timeline, project requirements, and a brief description of the variety of methodologies in the current literature. We also present results from our 1-month “proof-of-concept” trial run designed to illustrate the utility and feasibility of the ARTMIP project.
0
Paper
Citation291
0
Save
0

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology

Jonathan Rutz et al.Nov 25, 2019
Abstract Atmospheric rivers (ARs) are now widely known for their association with high‐impact weather events and long‐term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR‐related metrics based on 20+ different AR identification and tracking methods applied to Modern‐Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria‐based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all‐method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR‐related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR‐related research to consider.
0
Paper
Citation238
0
Save
0

Towards Physics-informed Deep Learning for Turbulent Flow Prediction

Rui Wang et al.Aug 20, 2020
While deep learning has shown tremendous success in a wide range of domains, it remains a grand challenge to incorporate physical principles in a systematic manner to the design, training, and inference of such models. In this paper, we aim to predict turbulent flow by learning its highly nonlinear dynamics from spatiotemporal velocity fields of large-scale fluid flow simulations of relevance to turbulence modeling and climate modeling. We adopt a hybrid approach by marrying two well-established turbulent flow simulation techniques with deep learning. Specifically, we introduce trainable spectral filters in a coupled model of Reynolds-averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES), followed by a specialized U-net for prediction. Our approach, which we call Turbulent-Flow Net, is grounded in a principled physics model, yet offers the flexibility of learned representations. We compare our model with state-of-the-art baselines and observe significant reductions in error for predictions 60 frames ahead. Most importantly, our method predicts physical fields that obey desirable physical characteristics, such as conservation of mass, whilst faithfully emulating the turbulent kinetic energy field and spectrum, which are critical for accurate prediction of turbulent flows.