KD
Kaspar Daellenbach
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
5,224
h-index:
42
/
i10-index:
77
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

New insights into PM&lt;sub&gt;2.5&lt;/sub&gt; chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry

Miriam Elser et al.Mar 11, 2016
Abstract. During winter 2013–2014 aerosol mass spectrometer (AMS) measurements were conducted for the first time with a novel PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) lens in two major cities of China: Xi'an and Beijing. We denote the periods with visibility below 2 km as extreme haze and refer to the rest as reference periods. During the measurements in Xi'an an extreme haze covered the city for about a week and the total non-refractory (NR)-PM2.5 mass fraction reached peak concentrations of over 1000 µg m−3. During the measurements in Beijing two extreme haze events occurred, but the temporal extent and the total concentrations reached during these events were lower than in Xi'an. Average PM2.5 concentrations of 537 ± 146 and 243 ± 47 µg m−3 (including NR species and equivalent black carbon, eBC) were recorded during the extreme haze events in Xi'an and Beijing, respectively. During the reference periods the measured average concentrations were 140 ± 99 µg m−3 in Xi'an and 75 ± 61 µg m−3 in Beijing. The relative composition of the NR-PM2.5 evolved substantially during the extreme haze periods, with increased contributions of the inorganic components (mostly sulfate and nitrate). Our results suggest that the high relative humidity present during the extreme haze events had a strong effect on the increase of sulfate mass (via aqueous phase oxidation of sulfur dioxide). Another relevant characteristic of the extreme haze is the size of the measured particles. During the extreme haze events, the AMS showed much larger particles, with a volume weighted mode at about 800 to 1000 nm, in contrast to about 400 nm during reference periods. These large particle sizes made the use of the PM2.5 inlet crucial, especially during the severe haze events, where 39 ± 5 % of the mass would have been lost in the conventional PM1 (particulate matter with aerodynamic diameter ≤ 1 µm) inlet. A novel positive matrix factorization procedure was developed to apportion the sources of organic aerosols (OA) based on their mass spectra using the multilinear engine (ME-2) controlled via the source finder (SoFi). The procedure allows for an effective exploration of the solution space, a more objective selection of the best solution and an estimation of the rotational uncertainties. Our results clearly show an increase of the oxygenated organic aerosol (OOA) mass during extreme haze events. The contribution of OOA to the total OA increased from the reference to the extreme haze periods from 16.2 ± 1.1 to 31.3 ± 1.5 % in Xi'an and from 15.7 ± 0.7 to 25.0 ± 1.2 % in Beijing. By contrast, during the reference periods the total OA mass was dominated by domestic emissions of primary aerosols from biomass burning in Xi'an (42.2 ± 1.5 % of OA) and coal combustion in Beijing (55.2 ± 1.6 % of OA). These two sources are also mostly responsible for extremely high polycyclic aromatic hydrocarbon (PAH) concentrations measured with the AMS (campaign average of 2.1 ± 2.0 µg m−3 and frequent peak concentrations above 10 µg m−3). To the best of our knowledge, this is the first data set where the simultaneous extraction of these two primary sources could be achieved in China by conducting on-line AMS measurements at two areas with contrasted emission patterns.
0
Paper
Citation357
0
Save
0

Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013

Yanlin Zhang et al.Feb 6, 2015
Abstract. During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.
0
Paper
Citation191
0
Save
0

Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars

Stephen Platt et al.Jul 3, 2017
Abstract Carbonaceous particulate matter (PM), comprising black carbon (BC), primary organic aerosol (POA) and secondary organic aerosol (SOA, from atmospheric aging of precursors), is a highly toxic vehicle exhaust component. Therefore, understanding vehicle pollution requires knowledge of both primary emissions, and how these emissions age in the atmosphere. We provide a systematic examination of carbonaceous PM emissions and parameterisation of SOA formation from modern diesel and gasoline cars at different temperatures (22, −7 °C) during controlled laboratory experiments. Carbonaceous PM emission and SOA formation is markedly higher from gasoline than diesel particle filter (DPF) and catalyst-equipped diesel cars, more so at −7 °C, contrasting with nitrogen oxides (NO X ). Higher SOA formation from gasoline cars and primary emission reductions for diesels implies gasoline cars will increasingly dominate vehicular total carbonaceous PM, though older non-DPF-equipped diesels will continue to dominate the primary fraction for some time. Supported by state-of-the-art source apportionment of ambient fossil fuel derived PM, our results show that whether gasoline or diesel cars are more polluting depends on the pollutant in question, i.e. that diesel cars are not necessarily worse polluters than gasoline cars.
0
Paper
Citation185
0
Save
0

An interlaboratory comparison to quantify oxidative potential measurement in aerosol particles: challenges and recommendations for harmonisation

Pamela Dominutti et al.Jan 13, 2025
Abstract. This paper presents the findings from a collaborative interlaboratory comparison exercise designed to assess oxidative potential (OP) measurements conducted by 20 laboratories worldwide. This study represents an innovative effort as the first exercise specifically aimed at harmonising this type of OP assay, setting a new benchmark in the field. Over the last decade, there has been a noticeable increase in OP studies, with numerous research groups investigating the effects of exposure to air pollution particles through the evaluation of OP levels. However, the absence of standardised methods for OP measurements has resulted in variability in results across different groups, rendering meaningful comparisons challenging. To address this issue, this study engages in an international effort to compare OP measurements using a simplified method (with a dithiothreitol (DTT) assay). Here, we quantify the OP in liquid samples to focus on the protocol measurement itself, while future international OP interlaboratory comparisons (ILCs) should aim to assess the whole chain process, including the sample extraction. We analyse the similarities and discrepancies observed in the results, identifying the critical parameters (such as the instrument used, the use of a simplified protocol, the delivery and analysis time) that could influence OP measurements and provide recommendations for future studies and interlaboratory comparisons even if other crucial aspects, such as sampling PM methods, sample storage, extraction methods and conditions, and the evaluation of other OP assays, still need to be standardised. This collaborative approach enhances the robustness of the OP DTT assay and paves the way for future studies to build on a unified framework. This pioneering work concludes that interlaboratory comparisons provide essential insights into the OP metric and are crucial to move toward the harmonisation of OP measurements.
0

An improved setup for radiocarbon analysis of water-soluble organic carbon in environmental matrices

Jan Strähl et al.Dec 5, 2024
Abstract This paper presents an improved setup for radiocarbon analysis of water-soluble organic carbon based on wet chemical oxidation as installed at the Laboratory for the Analysis of Radiocarbon with AMS (LARA) at the University of Bern. The implementation of a non-dispersive infrared CO 2 detector allows more precise and accurate quantification of carbon amounts in samples and establishes the possibility of simple monitoring of the efficacy of flushing and sampling processes. A detailed blank assessment unveiled undesired oxidation of different materials and sample temperature as critical factors regarding the level of constant contamination. Contamination arising from oxidation of septum pieces and carbon-based glues in conventional sampling needles was minimized by developing a glass-sintered needle. This new needle was also designed to be longer, reducing the minimum amount of sample solution needed to 2 mL. The oxidation time and temperature (1 hr at 75°C) were optimized to further decrease contamination during analyses of samples with carbon amounts of up to ∼50 µg. With these improvements, we now report low constant contamination levels of 0.62 ± 0.12 µg C (with F 14 C of 0.19 ± 0.04), whereas the cross contamination factor was determined to be 0.25 ± 0.07%.
0
0
Save
0

Dust event identification and characterization with one-year online observations in Beijing

Feixue Zheng et al.Nov 4, 2024
Dust storms have a profound impact on air quality, atmospheric chemistry, and human well-being by carrying vast amounts of particles over distances of thousands of kilometers. However, the overall characteristics of these dust events and their influence on secondary pollution in the northern China region are not yet well understood, due to a lack of long-term, comprehensive observations and objective identification techniques. Based on principal component analysis combined with high-time-resolution observations of particulate matter components, here we developed a robust method to identify dust storm events and identified 14 dust events in Beijing in 2019. We further classified these 14 events into two distinct types using Lagrangian particle dispersion models and backward trajectory analysis. The first type (Type I, 9 cases) is characterized by synoptic patterns in Mongolia, originating from the north and directly impacting the Beijing area. The second type (Type II, 5 cases) involves air masses from the north or northwest that temporarily pass through polluted regions south of Beijing before being carried back into the city. Consistently, during Type I dust events, we observed a sharp decrease in secondary inorganic aerosols (SIA) from 65 % to 7 %, as well as in the sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) (from 0.52 to 0.19, and 0.27 to 0.018 respectively). In contrast, during Type II dust events, SIA concentrations increased by 91 %, along with an increase in SOR (1.7 %), NOR (69 %), and f