JD
John Davies
Author with expertise in Computational Methods in Drug Discovery
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(0% Open Access)
Cited by:
1,278
h-index:
31
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Prediction of Biological Targets for Compounds Using Multiple-Category Bayesian Models Trained on Chemogenomics Databases

Nidhi Nidhi et al.Mar 22, 2006
Target identification is a critical step following the discovery of small molecules that elicit a biological phenotype. The present work seeks to provide an in silico correlate of experimental target fishing technologies in order to rapidly fish out potential targets for compounds on the basis of chemical structure alone. A multiple-category Laplacian-modified naïve Bayesian model was trained on extended-connectivity fingerprints of compounds from 964 target classes in the WOMBAT (World Of Molecular BioAcTivity) chemogenomics database. The model was employed to predict the top three most likely protein targets for all MDDR (MDL Drug Database Report) database compounds. On average, the correct target was found 77% of the time for compounds from 10 MDDR activity classes with known targets. For MDDR compounds annotated with only therapeutic or generic activities such as "antineoplastic", "kinase inhibitor", or "anti-inflammatory", the model was able to systematically deconvolute the generic activities to specific targets associated with the therapeutic effect. Examples of successful deconvolution are given, demonstrating the usefulness of the tool for improving knowledge in chemogenomics databases and for predicting new targets for orphan compounds.
0

Analysis of Pharmacology Data and the Prediction of Adverse Drug Reactions and Off‐Target Effects from Chemical Structure

Andreas Bender et al.May 3, 2007
Preclinical Safety Pharmacology (PSP) attempts to anticipate adverse drug reactions (ADRs) during early phases of drug discovery by testing compounds in simple, in vitro binding assays (that is, preclinical profiling). The selection of PSP targets is based largely on circumstantial evidence of their contribution to known clinical ADRs, inferred from findings in clinical trials, animal experiments, and molecular studies going back more than forty years. In this work we explore PSP chemical space and its relevance for the prediction of adverse drug reactions. Firstly, in silico (computational) Bayesian models for 70 PSP-related targets were built, which are able to detect 93% of the ligands binding at IC(50) < or = 10 microM at an overall correct classification rate of about 94%. Secondly, employing the World Drug Index (WDI), a model for adverse drug reactions was built directly based on normalized side-effect annotations in the WDI, which does not require any underlying functional knowledge. This is, to our knowledge, the first attempt to predict adverse drug reactions across hundreds of categories from chemical structure alone. On average 90% of the adverse drug reactions observed with known, clinically used compounds were detected, an overall correct classification rate of 92%. Drugs withdrawn from the market (Rapacuronium, Suprofen) were tested in the model and their predicted ADRs align well with known ADRs. The analysis was repeated for acetylsalicylic acid and Benperidol which are still on the market. Importantly, features of the models are interpretable and back-projectable to chemical structure, raising the possibility of rationally engineering out adverse effects. By combining PSP and ADR models new hypotheses linking targets and adverse effects can be proposed and examples for the opioid mu and the muscarinic M2 receptors, as well as for cyclooxygenase-1 are presented. It is hoped that the generation of predictive models for adverse drug reactions is able to help support early SAR to accelerate drug discovery and decrease late stage attrition in drug discovery projects. In addition, models such as the ones presented here can be used for compound profiling in all development stages.
0

How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space

Andreas Bender et al.Jan 6, 2009
Different molecular descriptors capture different aspects of molecular structures, but this effect has not yet been quantified systematically on a large scale. In this work, we calculate the similarity of 37 descriptors by repeatedly selecting query compounds and ranking the rest of the database. Euclidean distances between the rank-ordering of different descriptors are calculated to determine descriptor (as opposed to compound) similarity, followed by PCA for visualization. Four broad descriptor classes are identified, which are circular fingerprints; circular fingerprints considering counts; path-based and keyed fingerprints; and pharmacophoric descriptors. Descriptor behavior is much more defined by those four classes than the particular parametrization. Using counts instead of the presence/absence of fingerprints significantly changes descriptor behavior, which is crucial for performance of topological autocorrelation vectors, but not circular fingerprints. Four-point pharmacophores (piDAPH4) surprisingly lead to much higher retrieval rates than three-point pharmacophores (28.21% vs 19.15%) but still similar rank-ordering of compounds (retrieval of similar actives). Looking into individual rankings, circular fingerprints seem more appropriate than path-based fingerprints if complex ring systems or branching patterns are present; count-based fingerprints could be more suitable in databases with a large number of repeated subunits (amide bonds, sugar rings, terpenes). Information-based selection of diverse fingerprints for consensus scoring (ECFP4/TGD fingerprints) led only to marginal improvement over single fingerprint results. While it seems to be nontrivial to exploit orthogonal descriptor behavior to improve retrieval rates in consensus virtual screening, those descriptors still each retrieve different actives which corroborates the strategy of employing diverse descriptors individually in prospective virtual screening settings.