We propose a 1+1 dimensional CFT dual structure for quantum gravity andmatter on the extended 2+1 dimensional BTZ black hole, realized as a quotientof the Poincare patch of AdS$_3$. The quotient spacetime includes regionsbeyond the singularity, "whiskers", containing timelike and lightlike closedcurves, which at first sight seem unphysical. The spacetime includes the usualAdS-asymptotic boundaries outside the horizons as well as boundary componentsinside the whiskers. We show that local boundary correlators with someendpoints in the whisker regions: (i) are a protected class of amplitudes,dominated by effective field theory even when the associated Witten diagramsappear to traverse the singularity, (ii) describe well-defineddiffeomorphism-invariant quantum gravity amplitudes in BTZ, (iii) sharply probesome of the physics inside the horizon but outside the singularity, and (iv)are equivalent to correlators of specific non-local CFT operators in thestandard thermofield entangled state of two CFTs. In this sense, the whiskerregions can be considered as purely auxiliary spacetimes in which these usefulnon-local CFT correlators can be rendered as local boundary correlators, andtheir diagnostic value more readily understood. Our results follow by firstperforming a novel reanalysis of the Rindler view of standard AdS/CFT dualityon the Poincare patch of AdS, followed by exploiting the simple quotientstructure of BTZ which turns the Rindler horizon into the BTZ black holehorizon. While most of our checks are within gravitational effective fieldtheory, we arrive at a fully non-perturbative CFT proposal to probe theUV-sensitive approach to the singularity.