XZ
Xuemei Zhao
Author with expertise in Chemistry of Actinide and Lanthanide Elements
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
1,046
h-index:
28
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Significantly Enhanced Uranium Extraction from Seawater with Mass Produced Fully Amidoximated Nanofiber Adsorbent

Dong Wang et al.Oct 14, 2018
Abstract The oceans contain hundreds of times more uranium than terrestrial ores. Fiber‐based adsorption is considered to be the most promising method to realize the industrialization of uranium extraction from seawater. In this work, a pre‐amidoximation with a blow spinning strategy is developed for mass production of poly(imide dioxime) nanofiber (PIDO NF) adsorbents with many chelating sites, excellent hydrophilicity, 3D porous architecture, and good mechanical properties. The structural evidences from 13 C NMR spectra confirm that the main functional group responsible for the uranyl binding is not “amidoxime” but cyclic “imidedioxime.” The uranium adsorption capacity of the PIDO NF adsorbent reaches 951 mg‐U per g‐Ads in uranium (8 ppm) spiked natural seawater. An average adsorption capacity of 8.7 mg‐U per g‐Ads is obtained after 56 d of exposure in natural seawater via a flow‐through column system. Moreover, up to 98.5% of the adsorbed uranium can be rapidly eluted out and the adsorbent can be regenerated and reused for over eight cycles of adsorption–desorption. This new blow spun PIDO nanofabric shows great potential as a new generation adsorbent for uranium extraction from seawater.
0
Paper
Citation323
0
Save
0

High-efficiency ITO-free polymer solar cells using highly conductive PEDOT:PSS/surfactant bilayer transparent anodes

Wenfeng Zhang et al.Jan 1, 2013
By spin-coating a surfactant layer, glycerol monostearate (GMS) atop poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film, a PEDOT:PSS/surfactant bilayer film was prepared facilely for the first time and applied as the transparent anode for high-efficiency ITO-free bulk heterojunction polymer solar cell (BHJ-PSC) devices. A significant improvement of the conductivity of PEDOT:PSS films (from ∼1 S cm−1 to more than 1000 S cm−1) was achieved by GMS modification and the highest conductivity reaches 1019 S cm−1 for Clevios PH 1000 under an optimized spin-coating speed of GMS layer. The Clevios PH 1000/GMS bilayer film exhibits a sheet resistance of 98 Ω sq−1 and a transparency of around 80% in the visible range, which are comparable to those of ITO, fulfilling its function as the transparent anode. The conductivity improvement by GMS modification is proposed to result from the GMS-induced segregation of PSS chains and the conformational change of the conductive PEDOT chains within PEDOT:PSS. While the highly hydrophobic –(CH2)16CH3 groups of GMS preferentially interact with the hydrophobic PEDOT of PEDOT:PSS, the highly hydrophilic –COOCH2–CHOH–CH2OH groups preferentially interact with the hydrophilic PSS chains with the hydroxyl groups playing an important role on the consequent phase separation between PEDOT and PSS chains. Using Clevios PH 1000/GMS bilayer films as the transparent anodes replacing ITO, high-efficiency ITO-free BHJ-PSC devices based on poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT) blended with [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) (PCDTBT:PC71BM) and thieno[3,4-b]-thiophene/benzodithiophene (PTB7):PC71BM systems exhibit power conversion efficiencies (PCE) of 5.90% and 7.06%, respectively, which are comparable to the corresponding devices based on the traditional ITO anode.