RC
Renchao Che
Author with expertise in Electromagnetic Interference Shielding and Materials
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(30% Open Access)
Cited by:
1,472
h-index:
45
/
i10-index:
90
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti3C2Tx MXene@Ni Microspheres

Caiyue Wen et al.Dec 27, 2021
Two-dimensional materials, especially the newly emerging MXene, have attracted numerous interests in the fields of energy conversion/storage and electromagnetic shielding/absorption. However, the inherently inevitable aggregation and absence of magnetic loss of MXene considerably limit its electromagnetic absorption application. The introduction of magnetic component and favorable structural engineering are the alternatives to improve the microwave absorption (MA) performance. Herein, we report a spheroidization strategy to assemble double-shell MXene@Ni microspheres, where the commonly lamellar MXene are reshaped into three-dimensional microspheres that provide the substrate for oriented growth of Ni nanospikes. Whereas this structural feature offers massive accessible active surfaces that effectively promote the dielectric loss ability, the introduction of magnetic Ni nanospikes enables the additional magnetic loss capacity. Benefiting from these merits, the synthesized 3D MXene@Ni microspheres exhibit superior MA performance with the minimum reflection loss value of -59.6 dB at an ultrathin thickness (∼1.5 mm) and effective absorption bandwidth of 4.48 GHz. Moreover, the electron holography results reveal that the high-density anisotropy magnetism plays an important role in the improvement of MA performance, which provides an insight for the design of MXene-based materials as high-efficient microwave absorbers.
0

Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties

Xiaomin Li et al.Dec 10, 2012
One pot successive layer-by-layer (SLBL) strategy is introduced to fabricate the core/shell upconversion nanoparticles (NPs) for the first time by using high boiling-point Re-OA (rare-earth chlorides dissolved in oleic acid at 140 °C) and Na-TFA-OA (sodium trifluoroacetate dissolved in oleic acid at room temperature) as shell precursor solutions. This protocol is flexible to deposit uniform multishell on both hexagonal (β) and cubic (α) phase cores by successive introducing of the shell precursor solutions. Shell thickness of the obtained NPs with narrow size distribution (σ < 10%) can be well controlled from 1 monolayer (∼0.36 nm) to more than 20 monolayers (∼8 nm) by simply tuning the amounts of the shell precursors. Furthermore, the tunable doping positions (core doping and shell doping) can also be achieved by adjusting the species and addition sequence of the shell precursors. As a result of the high quality uniform shell and advanced core/shell structures, the optical properties of the obtained core/shell NPs could be improved in upconversion luminescence efficiency (up to 0.51 ± 0.08%), stability (more resistant to quenching by water) and multicolor luminescence emission.
0

Self-Assembly-Magnetized MXene Avoid Dual-Agglomeration with Enhanced Interfaces for Strong Microwave Absorption through a Tunable Electromagnetic Property

Xiao Li et al.Nov 4, 2019
Multilayered microwave absorbers which can provide massive interfaces are highly needed for electromagnetic-wave absorption property enhancement. Meanwhile, how to effectively avoid agglomeration and further widen the absorption band is still a challenge. Herein, accordion-like magnetized MXene/Ni composites were fabricated by the electrostatic self-assembly interaction between multilayer MXene and Ni(OH)2 nanoplates and subsequent in situ reduction in the H2/Ar atmosphere. Ni nanoparticles were uniformly distributed without magnetic agglomeration between the multilayered gaps of the adjacent 2D (2 dimension) MXene (Ti3C2Tx) of MXene/Ni nanocomposites (magnetized MXene), which hold the distinct absorption performance that the reflection loss maximum measures up to -50.5 dB at 5.5 GHz. Moreover, dynamic magnetic response of the magnetized MXene absorber was first researched by the electron holography analysis. The related key mechanism includes the enhanced magnetic loss, less dual-agglomeration (multilayer MXene itself and magnetic agglomeration), and more interfaces and intrinsic defects for related polarization. A broadened absorption bandwidth can further be obtained by changing the mass ratio of MXene to Ni that possesses the widest absorption bandwidth of 5.28 GHz. This work provides a new route for the balance among strong absorption intensity, tunable electromagnetic properties, and wide absorption bandwidth of the MXene-based nanocomposites.
0

Highly Mixed Index Facet Engineering Induces Defect Formation and Converts the Wave‐Transmissive Mott Insulator NiO into Electromagnetic Wave Absorbent

Shengchong Hui et al.Nov 26, 2024
Mott insulator possesses the property of converting into semiconductor under supernormal conditions and achieving the Mott insulator-semiconductor transition (IST) holds great scientific value. Nevertheless, current IST methodologies possess certain limitations because they are not capable of being implemented under conventional conditions, thereby limiting their practical applications. Herein, a highly mixed index facets (HMIF) strategy is proposed to construct homogeneous interfaces with gradient work function (WF) in Mott insulator NiO, accompanied by numerous oxygen vacancies. These vacancies provide additional defect energy levels and inhomogeneous charge distributions, resulting in a 180 fold enhancement of conductivity, realizing the IST process, and inducing the defect polarization. In addition, HMIF configuration induces electron transport along the index facets with gradient WF, ultimately leading to accumulation on the specific facet. This accumulation allows this facet can be considered as a dipole with its adjacent facets and makes NiO to attenuate electromagnetic waves (EMW) through dipole polarization. Therefore, NiO with exposed HMIF possesses improved EMW absorption properties (80-fold higher than that of commercial NiO), realizing the transition from EMW-transmissive to EMW-absorbing materials. This research presents an approach for the IST process, discovers the polarization behavior that occurred on specific index facet, and extends its potential application in EMW absorption.
0
Citation3
0
Save
0

Programmable Electromagnetic Wave Absorption via Tailored Metal Single Atom‐Support Interactions

Mingyue Yuan et al.Jan 7, 2025
Abstract Metal single atoms (SA)‐support interactions inherently exhibit significant electrochemical activity, demonstrating potential in energy catalysis. However, leveraging these interactions to modulate electronic properties and extend application fields is a formidable challenge, demanding in‐depth understanding and quantitative control of atomic‐scale interactions. Herein, in situ, off‐axis electron holography technique is utilized to directly visualize the interactions between SAs and the graphene surface. These interactions facilitate the formation of dispersed nanoscale regions with high charge density and are highly sensitive to external electromagnetic (EM) fields, resulting in controllable dynamic relaxation processes for charge accumulation and restoration. This leads to customized dielectric relaxation, which is difficult to achieve with current band engineering methods. Moreover, these electronic behaviors are insensitive to elevated temperatures, having characteristics distinct from those of typical metallic or semiconducting materials. Based on these results, programmable EM wave absorption properties are achieved by developing a library of SA‐graphene materials and precisely controlling SA‐support interactions to tailor their responses to EM waves in terms of frequency and intensity. This advancement addresses the customized anti‐EM interference requirements of electronic components, greatly enhancing the development of integrated circuits and micro‐nano chips. Future efforts will concentrate on manipulating atomic interactions in SA‐support, potentially revolutionizing nanoelectronics and optoelectronics.