HX
Hockin Xu
Author with expertise in Bone Tissue Engineering and Biomaterials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,808
h-index:
84
/
i10-index:
340
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering

Liang Zhao et al.Jun 10, 2010
The need for bone repair has increased as the population ages. Stem cell-scaffold approaches hold immense promise for bone tissue engineering. However, currently, preformed scaffolds for cell delivery have drawbacks including the difficulty to seed cells deep into the scaffold, and inability for injection in minimally-invasive surgeries. Current injectable polymeric carriers and hydrogels are too weak for load-bearing orthopedic applications. The objective of this study was to develop an injectable and mechanically-strong stem cell construct for bone tissue engineering. Calcium phosphate cement (CPC) paste was combined with hydrogel microbeads encapsulating human umbilical cord mesenchymal stem cells (hUCMSCs). The hUCMSC-encapsulating composite paste was fully injectable under small injection forces. Cell viability after injection matched that in hydrogel without CPC and without injection. Mechanical properties of the construct matched the reported values of cancellous bone, and were much higher than previous injectable polymeric and hydrogel carriers. hUCMSCs in the injectable constructs osteodifferentiated, yielding high alkaline phosphatase, osteocalcin, collagen type I, and osterix gene expressions at 7 d, which were 50–70 fold higher than those at 1 d. Mineralization by the hUCMSCs at 14 d was 100-fold that at 1 d. In conclusion, a fully injectable, mechanically-strong, stem cell–CPC scaffold construct was developed. The encapsulated hUCMSCs remained viable, osteodifferentiated, and synthesized bone minerals. The new injectable stem cell construct with load-bearing capability may enhance bone regeneration in minimally-invasive and other orthopedic surgeries.
0
Citation318
0
Save
0

Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles

Lei Cheng et al.Feb 2, 2012
Calcium and phosphate ion-releasing resin composites are promising for remineralization. However, there has been no report on incorporating antibacterial agents to these composites. The objective of this study was to develop antibacterial and mechanically strong nanocomposites incorporating a quaternary ammonium dimethacrylate (QADM), nanoparticles of silver (NAg), and nanoparticles of amorphous calcium phosphate (NACP).The QADM, bis(2-methacryloyloxyethyl) dimethylammonium bromide (ionic dimethacrylate-1), was synthesized from 2-(N,N-dimethylamino)ethyl methacrylate and 2-bromoethyl methacrylate. NAg was synthesized by dissolving Ag 2-ethylhexanoate salt in 2-(tert-butylamino)ethyl methacrylate. Mechanical properties were measured in three-point flexure with bars of 2 mm×2 mm×25 mm (n=6). Composite disks (diameter=9 mm, thickness=2 mm) were inoculated with Streptococcus mutans. The metabolic activity and lactic acid production of biofilms were measured (n=6). Two commercial composites were used as controls.Flexural strength and elastic modulus of NACP+QADM, NACP+NAg, and NACP+QADM+NAg matched those of commercial composites with no antibacterial property (p>0.1). The NACP+QADM+NAg composite decreased the titer counts of adherent S. mutans biofilms by an order of magnitude, compared to the commercial composites (p<0.05). The metabolic activity and lactic acid production of biofilms on NACP+QADM+NAg composite were much less than those on commercial composites (p<0.05). Combining QADM and NAg rendered the nanocomposite more strongly antibacterial than either agent alone (p<0.05).QADM and NAg were incorporated into calcium phosphate composite for the first time. NACP+QADM+NAg was strongly antibacterial and greatly reduced the titer counts, metabolic activity, and acid production of S. mutans biofilms, while possessing mechanical properties similar to commercial composites. These nanocomposites are promising to have the double benefits of remineralization and antibacterial capabilities to inhibit dental caries.
0
Citation314
0
Save
0

Advanced smart biomaterials and constructs for hard tissue engineering and regeneration

Ke Zhang et al.Oct 19, 2018
Abstract Hard tissue repair and regeneration cost hundreds of billions of dollars annually worldwide, and the need has substantially increased as the population has aged. Hard tissues include bone and tooth structures that contain calcium phosphate minerals. Smart biomaterial-based tissue engineering and regenerative medicine methods have the exciting potential to meet this urgent need. Smart biomaterials and constructs refer to biomaterials and constructs that possess instructive/inductive or triggering/stimulating effects on cells and tissues by engineering the material’s responsiveness to internal or external stimuli or have intelligently tailored properties and functions that can promote tissue repair and regeneration. The smart material-based approaches include smart scaffolds and stem cell constructs for bone tissue engineering; smart drug delivery systems to enhance bone regeneration; smart dental resins that respond to pH to protect tooth structures; smart pH-sensitive dental materials to selectively inhibit acid-producing bacteria; smart polymers to modulate biofilm species away from a pathogenic composition and shift towards a healthy composition; and smart materials to suppress biofilms and avoid drug resistance. These smart biomaterials can not only deliver and guide stem cells to improve tissue regeneration and deliver drugs and bioactive agents with spatially and temporarily controlled releases but can also modulate/suppress biofilms and combat infections in wound sites. The new generation of smart biomaterials provides exciting potential and is a promising opportunity to substantially enhance hard tissue engineering and regenerative medicine efficacy.
0

Effects of Quaternary Ammonium Chain Length on Antibacterial Bonding Agents

Fēi Li et al.Aug 20, 2013
The objectives of this study were to synthesize new quaternary ammonium methacrylates (QAMs) with systematically varied alkyl chain lengths (CL) and to investigate, for the first time, the CL effects on antibacterial efficacy, cytotoxicity, and dentin bond strength of bonding agents. QAMs were synthesized with CL of 3 to 18 and incorporated into Scotchbond Multi-Purpose (SBMP) bonding agent. The cured resins were inoculated with Streptococcus mutans. Bacterial early attachment was investigated at 4 hrs. Biofilm colony-forming units (CFU) were measured after 2 days. With CL increasing from 3 to 16, the minimum inhibitory concentration and minimum bactericidal concentration were decreased by 5 orders of magnitude. Incorporating QAMs into SBMP reduced bacterial early attachment, with the least colonization at CL = 16. Biofilm CFU for CL = 16 was 4 log lower than SBMP control (p < .05). All groups had similar dentin bond strengths (p > .1). The new antibacterial materials had fibroblast/odontoblast viability similar to that of commercial controls. In conclusion, increasing the chain length of new QAMs in bonding agents greatly increased the antibacterial efficacy. A reduction in Streptococcus mutans biofilm CFU by 4 log could be achieved, without compromising bond strength and cytotoxicity. New QAM-containing bonding agents are promising for a wide range of restorations to inhibit biofilms.
0
Citation199
0
Save