Muscle-invasive bladder carcinoma (MIBC) constitutes a heterogeneous group of tumors with a poor outcome. Molecular stratification of MIBC may identify clinically relevant tumor subgroups and help to provide effective targeted therapies. From seven series of large-scale transcriptomic data (383 tumors), we identified an MIBC subgroup accounting for 23.5% of MIBC, associated with shorter survival and displaying a basal-like phenotype, as shown by the expression of epithelial basal cell markers. Basal-like tumors presented an activation of the epidermal growth factor receptor (EGFR) pathway linked to frequent EGFR gains and activation of an EGFR autocrine loop. We used a 40-gene expression classifier derived from human tumors to identify human bladder cancer cell lines and a chemically induced mouse model of bladder cancer corresponding to human basal-like bladder cancer. We showed, in both models, that tumor cells were sensitive to anti-EGFR therapy. Our findings provide preclinical proof of concept that anti-EGFR therapy can be used to target a subset of particularly aggressive MIBC tumors expressing basal cell markers and provide diagnostic tools for identifying these tumors.