SJ
Shenglu Ji
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
1,131
h-index:
25
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes

Ji Qi et al.May 4, 2018
Abstract Fluorescence and photoacoustic imaging have different advantages in cancer diagnosis; however, combining effects in one agent normally requires a trade-off as the mechanisms interfere. Here, based on rational molecular design, we introduce a smart organic nanoparticle whose absorbed excitation energy can be photo-switched to the pathway of thermal deactivation for photoacoustic imaging, or to allow opposed routes for fluorescence imaging and photodynamic therapy. The molecule is made of a dithienylethene (DTE) core with two surrounding 2-(1-(4-(1,2,2-triphenylvinyl)phenyl)ethylidene)malononitrile (TPECM) units (DTE-TPECM). The photosensitive molecule changes from a ring-closed, for photoacoustic imaging, to a ring-opened state for fluorescence and photodynamic effects upon an external light trigger. The nanoparticles’ photoacoustic and fluorescence imaging properties demonstrate the advantage of the switch. The use of the nanoparticles improves the outcomes of in vivo cancer surgery using preoperative photoacoustic imaging and intraoperative fluorescent visualization/photodynamic therapy of residual tumours to ensure total tumour removal.
0

Metal–Organic‐Framework‐Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy

Duo Mao et al.Mar 5, 2018
Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through noninvasive theranostic approaches. Herein, a new strategy is reported to achieve in vivo metabolic labeling of bacteria through the use of MIL-100 (Fe) nanoparticles (NPs) as the nanocarrier for precise delivery of 3-azido-d-alanine (d-AzAla). After intravenous injection, MIL-100 (Fe) NPs can accumulate preferentially and degrade rapidly within the high H2 O2 inflammatory environment, releasing d-AzAla in the process. d-AzAla is selectively integrated into the cell walls of bacteria, which is confirmed by fluorescence signals from clickable DBCO-Cy5. Ultrasmall photosensitizer NPs with aggregation-induced emission characteristics are subsequently designed to react with the modified bacteria through in vivo click chemistry. Through photodynamic therapy, the amount of bacteria on the infected tissue can be significantly reduced. Overall, this study demonstrates the advantages of metal-organic-framework-assisted bacteria metabolic labeling strategy for precise bacterial detection and therapy guided by fluorescence imaging.
0
Citation306
0
Save
0

Mitochondrion‐Anchoring Photosensitizer with Aggregation‐Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation

Chris Yu et al.Feb 13, 2017
The first mitochondrion‐anchoring photosensitizer that specifically generates singlet oxygen ( 1 O 2 ) in mitochondria under white light irradiation that can serve as a highly effective radiosensitizer is reported here, significantly sensitizing cancer cells to ionizing radiation. An aggregation‐induced emission luminogen (AIEgen), namely DPA‐SCP, is rationally designed with α‐cyanostilbene as a simple building block to reveal AIE, diphenylamino (DPA) group as a strong electron donating group to benefit red emission and efficient light‐controlled 1 O 2 generation, as well as a pyridinium salt as the targeting moiety to ensure specific mitochondrial localization. The AIE signature endows DPA‐SCP with the capacity to visualize mitochondria in a fluorescence turn‐on mode. It is found that under optimized experimental condition, DPA‐SCP with white light does not lead to apoptosis/death of cancer cells, whereas provides an elevated 1 O 2 environment in the mitochondria. More importantly, increasing intracellular level of 1 O 2 originated from mitochondria is demonstrated to be a generic method to enhance the radiosensitivity of cancer cells with a supra‐additive synergistic effect of “0 + 1 > 1.” Noteworthy is that “DPA‐SCP + white light” achieves a high SER10 value of 1.62, which is much larger than that of the most popularly used radiosensitizers, gold nanoparticles (1.19), and paclitaxel (1.32).
0
Citation252
0
Save
0

Micelle-like Nanoparticles for Drug Delivery and Magnetically Enhanced Tumor Chemotherapy

Liqin Xie et al.Nov 22, 2024
Using the coordination bonds between transition metal atoms and electron-rich functional groups, we synthesized two kinds of micelle-like nanoparticles. Using magnetic Fe3O4 as the core, poly(methyl methacrylate) (PMMA) and poly(acrylic acid) (PAA) brushes were grafted via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP), which formed micelle-like magnetic nanoparticles Fe3O4/PAA–PMMA with a hydrophobic outer layer and Fe3O4/PMMA–PAA with a hydrophilic outer layer. Both the micelle-like nanoparticles had amphiphilic properties and can be used to load hydrophilic or hydrophobic drugs. Even loaded with hydrophobic drugs, the micelle-like nanoparticles can still be dispersed in aqueous solution, and Fe3O4/PAA–PMMA had a higher loading content. As the drug carrier, these two micelle-like nanoparticles can be used for magnetically targeted drug delivery and magnetic resonance imaging due to superparamagnetic Fe3O4. In addition, due to the magnetic retention effect, the drug-loaded micelle-like nanoparticles remained at the tumor site, increasing the local drug concentration. At the same time, the drug-loaded micelle-like nanoparticles generated a magnetocaloric effect under the alternating magnetic field, which not only killed tumor cells by magnetic hyperthermia but also promoted the rapid release of drugs at the tumor site. In general, magnetically enhanced chemotherapy showed the best therapeutic effect on tumors.