SD
Scott Doyle
Author with expertise in Deep Learning in Medical Image Analysis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
552
h-index:
29
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Automated gland and nuclei segmentation for grading of prostate and breast cancer histopathology

Shivang Naik et al.May 1, 2008
Automated detection and segmentation of nuclear and glandular structures is critical for classification and grading of prostate and breast cancer histopathology. In this paper, we present a methodology for automated detection and segmentation of structures of interest in digitized histopathology images. The scheme integrates image information from across three different scales: (1) low- level information based on pixel values, (2) high-level information based on relationships between pixels for object detection, and (3) domain-specific information based on relationships between histological structures. Low-level information is utilized by a Bayesian classifier to generate a likelihood that each pixel belongs to an object of interest. High-level information is extracted in two ways: (i) by a level-set algorithm, where a contour is evolved in the likelihood scenes generated by the Bayesian classifier to identify object boundaries, and (ii) by a template matching algorithm, where shape models are used to identify glands and nuclei from the low-level likelihood scenes. Structural constraints are imposed via domain- specific knowledge in order to verify whether the detected objects do indeed belong to structures of interest. In this paper we demonstrate the utility of our glandular and nuclear segmentation algorithm in accurate extraction of various morphological and nuclear features for automated grading of (a) prostate cancer, (b) breast cancer, and (c) distinguishing between cancerous and benign breast histology specimens. The efficacy of our segmentation algorithm is evaluated by comparing breast and prostate cancer grading and benign vs. cancer discrimination accuracies with corresponding accuracies obtained via manual detection and segmentation of glands and nuclei.
0
Paper
Citation303
0
Save
0

A Boosted Bayesian Multiresolution Classifier for Prostate Cancer Detection From Digitized Needle Biopsies

Scott Doyle et al.Jun 25, 2010
Diagnosis of prostate cancer (CaP) currently involves examining tissue samples for CaP presence and extent via a microscope, a time-consuming and subjective process. With the advent of digital pathology, computer-aided algorithms can now be applied to disease detection on digitized glass slides. The size of these digitized histology images (hundreds of millions of pixels) presents a formidable challenge for any computerized image analysis program. In this paper, we present a boosted Bayesian multiresolution (BBMR) system to identify regions of CaP on digital biopsy slides. Such a system would serve as an important preceding step to a Gleason grading algorithm, where the objective would be to score the invasiveness and severity of the disease. In the first step, our algorithm decomposes the whole-slide image into an image pyramid comprising multiple resolution levels. Regions identified as cancer via a Bayesian classifier at lower resolution levels are subsequently examined in greater detail at higher resolution levels, thereby allowing for rapid and efficient analysis of large images. At each resolution level, ten image features are chosen from a pool of over 900 first-order statistical, second-order co-occurrence, and Gabor filter features using an AdaBoost ensemble method. The BBMR scheme, operating on 100 images obtained from 58 patients, yielded: 1) areas under the receiver operating characteristic curve (AUC) of 0.84, 0.83, and 0.76, respectively, at the lowest, intermediate, and highest resolution levels and 2) an eightfold savings in terms of computational time compared to running the algorithm directly at full (highest) resolution. The BBMR model outperformed (in terms of AUC): 1) individual features (no ensemble) and 2) a random forest classifier ensemble obtained by bagging multiple decision tree classifiers. The apparent drop-off in AUC at higher image resolutions is due to lack of fine detail in the expert annotation of CaP and is not an artifact of the classifier. The implicit feature selection done via the AdaBoost component of the BBMR classifier reveals that different classes and types of image features become more relevant for discriminating between CaP and benign areas at different image resolutions.