GS
Guozheng Shi
Author with expertise in Perovskite Solar Cell Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(0% Open Access)
Cited by:
757
h-index:
27
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

14.1% CsPbI3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation

Xufeng Ling et al.Jun 23, 2019
Abstract Surface manipulation of quantum dots (QDs) has been extensively reported to be crucial to their performance when applied into optoelectronic devices, especially for photovoltaic devices. In this work, an efficient surface passivation method for emerging CsPbI 3 perovskite QDs using a variety of inorganic cesium salts (cesium acetate (CsAc), cesium idodide (CsI), cesium carbonate (Cs 2 CO 3 ), and cesium nitrate (CsNO 3 )) is reported. The Cs‐salts post‐treatment can not only fill the vacancy at the CsPbI 3 perovskite surface but also improve electron coupling between CsPbI 3 QDs. As a result, the free carrier lifetime, diffusion length, and mobility of QD film are simultaneously improved, which are beneficial for fabricating high‐quality conductive QD films for efficient solar cell devices. After optimizing the post‐treatment process, the short‐circuit current density and fill factor are significantly enhanced, delivering an impressive efficiency of 14.10% for CsPbI 3 QD solar cells. In addition, the Cs‐salt‐treated CsPbI 3 QD devices exhibit improved stability against moisture due to the improved surface environment of these QDs. These findings will provide insight into the design of high‐performance and low‐trap‐states perovskite QD films with desirable optoelectronic properties.
0
Paper
Citation296
0
Save
0

Dopant‐Free Spiro‐Triphenylamine/Fluorene as Hole‐Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability

Ya‐Kun Wang et al.Jan 29, 2016
Chemical doping is often used to enhance electric conductivity of the conjugated molecule as hole‐transporting material (HTM) for the application in optoelectronics. However, chemical dopants can promote ion migration at the electrical field, which deteriorates the device efficiency as well as increases the fabrication cost. Here, two star HTMs, namely 2,2′,7,7′‐tetrakis( N , N ‐di‐ p ‐methoxyphenyl‐amine) 9,9′‐spirobifluorene (Spiro‐OMeTAD) and poly(triarylamine) are subjeted to chemical combination to yield dopant‐free N2,N2,N2′,N2′,N7,N7,N7′,N7′‐octakis(4‐methoxyphenyl)‐10‐phenyl‐10H‐spiro[acridine‐9,9′‐fluorene]‐2,2′,7,7′‐tetraamine (SAF‐OMe). The power conversion efficiencies (PCEs) of 12.39% achieved by solar cells based on pristine, dopant‐free SAF‐OMe are among the highest reported for perovskite solar cells and are even comparable to devices based on chemically doped Spiro‐OMeTAD (14.84%). Moreover, using a HTM comprised of SAF‐OMe with an additional dopant results in a record PCE of 16.73%. Compared to Spiro‐OMeTAD‐based devices, SAF‐OMe significantly improves stability.