LM
L. Montier
Author with expertise in Radio Astronomy Techniques and Instruments
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
743
h-index:
121
/
i10-index:
313
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Planckpre-launch status: The HFI instrument, from specification to actual performance

J.‐M. Lamarre et al.Feb 16, 2010
Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz–1 THz range.Aims. The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration.Methods. The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques.Results. The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification.
0
Paper
Citation247
0
Save
0

The pre-launchPlanckSky Model: a model of sky emission at submillimetre to centimetre wavelengths

P. Mazzotta et al.Mar 7, 2013
We present the Planck Sky Model (PSM), a parametric model for the generation of all-sky, few arcminute resolution maps of sky emission at submillimetre to centimetre wavelengths, in both intensity and polarisation. Several options are implemented to model the cosmic microwave background, Galactic diffuse emission (synchrotron, free-free, thermal and spinning dust, CO lines), Galactic H-II regions, extragalactic radio sources, dusty galaxies, and thermal and kinetic Sunyaev-Zeldovich signals from clusters of galaxies. Each component is simulated by means of educated interpolations/extrapolations of data sets available at the time of the launch of the Planck mission, complemented by state-of-the-art models of the emission. Distinctive features of the simulations are: spatially varying spectral properties of synchrotron and dust; different spectral parameters for each point source; modeling of the clustering properties of extragalactic sources and of the power spectrum of fluctuations in the cosmic infrared background. The PSM enables the production of random realizations of the sky emission, constrained to match observational data within their uncertainties, and is implemented in a software package that is regularly updated with incoming information from observations. The model is expected to serve as a useful tool for optimizing planned microwave and sub-millimetre surveys and to test data processing and analysis pipelines. It is, in particular, used for the development and validation of data analysis pipelines within the planck collaboration. A version of the software that can be used for simulating the observations for a variety of experiments is made available on a dedicated website.
0

Impact of beam far side-lobe knowledge in the presence of foregrounds for LiteBIRD

Clément Leloup et al.Jun 1, 2024
Abstract We present a study of the impact of a beam far side-lobe lack of knowledge on the measurement of the Cosmic Microwave Background B -mode signal at large scale. Beam far side-lobes induce a mismatch in the transfer function of Galactic foregrounds between the dipole and higher multipoles which degrads the performances of component separation methods. This leads to foreground residuals in the CMB map. It is expected to be one of the main source of systematic effects in future CMB polarization observations. Thus, it becomes crucial for all-sky survey missions to take into account the interplays between beam systematic effects and all the data analysis steps. LiteBIRD is the ISAS/JAXA second strategic large-class satellite mission and is dedicated to target the measurement of CMB primordial B modes by reaching a sensitivity on the tensor-to-scalar ratio r of σ ( r ) ≤ 10 -3 assuming r = 0. The primary goal of this paper is to provide the methodology and develop the framework to carry out the end-to-end study of beam far side-lobe effects for a space-borne CMB experiment. We introduce uncertainties in the beam model, and propagate the beam effects through all the steps of the analysis pipeline, most importantly including component separation, up to the cosmological results in the form of a bias δr . As a demonstration of our framework, we derive requirements on the calibration and modeling for the LiteBIRD 's beams under given assumptions on design, simulation, component separation method and allocated error budget. In particular, we assume a parametric method of component separation with no mitigation of the far side-lobes effect at any stage of the analysis pipeline. We show that δr is mostly due to the integrated fractional power difference between the estimated beams and the true beams in the far side-lobes region, with little dependence on the actual shape of the beams, for low enough δr . Under our set of assumptions, in particular considering the specific foreground cleaning method we used, we find that the integrated fractional power in the far side-lobes should be known at the level of ∼ 10 -4 , to achieve the required limit on the bias δr < 1.9 × 10 -5 . The framework and tools developed for this study can be easily adapted to provide requirements under different design, data analysis frameworks and for other future space-borne experiments, such as PICO or CMB-Bharat. We further discuss the limitations of this framework and potential extensions to circumvent them.
0

Requirements on the gain calibration for LiteBIRD polarisation data with blind component separation

F. Carralot et al.Jan 1, 2025
Abstract The detection of primordial B modes of the cosmic microwave background (CMB) could provide information about the early stages of the Universe's evolution. The faintness of this signal requires exquisite calibration accuracy and control of instrumental systematic effects which otherwise could bias the measurements. In this work, we study the impact of an imperfect relative polarisation gain calibration on the recovered value of the tensor-to-scalar ratio r for the LiteBIRD experiment, through the application of the blind Needlet Internal Linear Combination (NILC) foreground-cleaning method. We derive requirements on the relative calibration accuracy of the overall polarisation gain (Δ g ν ) for each LiteBIRD frequency channel. Our results show that minimum variance techniques, as NILC, are less sensitive to systematic gain calibration uncertainties compared to a parametric approach, if the latter is not equipped with a proper modelling of these instrumental effects. In this study, the most stringent requirements are found in the channels where the CMB signal is relatively brighter, with the tightest constraints at 166 GHz (Δ g ν ≈ 0.16%). This differs from the outcome of an analogous analysis performed with a parametric method, where the tightest requirements are obtained for the foreground-dominated channels. Gain calibration uncertainties, corresponding to the derived requirements, are then simultaneously propagated into all frequency channels. By doing so, we find that the overall impact on estimated r is lower than the total gain systematic budget for LiteBIRD approximately by a factor 5, due to the correlations of the impacts of gain calibration uncertainties in different frequency channels. In order to decouple the systematic effect from the specific choice of the model, we derive the requirements assuming constant spectral parameters for the foreground emission. To assess the robustness of the obtained results against more realistic scenarios, we repeat the analysis assuming sky models of intermediate and high complexity. In these further cases, we adopt an optimised NILC pipeline, called the Multi-Clustering NILC (MC-NILC). We find that the impact of gain calibration uncertainties on r is lower than the LiteBIRD gain systematics budget for the intermediate-complexity sky model. For the high-complexity case, instead, it would be necessary to tighten the requirements by a factor 1.8.