BE
B Edwards
Author with expertise in Formation and Evolution of the Solar System
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
2
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A possible misaligned orbit for the young planet AU Mic c

Haochuan Yu et al.Nov 26, 2024
ABSTRACT The AU Microscopii planetary system is only 24 Myr old, and its geometry may provide clues about the early dynamical history of planetary systems. Here, we present the first measurement of the Rossiter–McLaughlin effect for the warm sub-Neptune AU Mic c, using two transits observed simultaneously with the European Southern Observatory's (ESO's) Very Large Telescope (VLT)/Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations (ESPRESSO), CHaracterising ExOPlanet Satellite (CHEOPS), and Next-Generation Transit Survey (NGTS). After correcting for flares and for the magnetic activity of the host star, and accounting for transit-timing variations, we find the sky-projected spin–orbit angle of planet c to be in the range $\lambda _{\mathrm{c}}=67.8_{-49.0}^{+31.7}$ degrees (1$\sigma$). We examine the possibility that planet c is misaligned with respect to the orbit of the inner planet b ($\lambda _{\mathrm{b}}=-2.96_{-10.30}^{+10.44}$), and the equatorial plane of the host star, and discuss scenarios that could explain both this and the planet’s high density, including secular interactions with other bodies in the system or a giant impact. We note that a significantly misaligned orbit for planet c is in some degree of tension with the dynamical stability of the system, and with the fact that we see both planets in transit, though these arguments alone do not preclude such an orbit. Further observations would be highly desirable to constrain the spin–orbit angle of planet c more precisely.
0

Architecture of TOI-561 planetary system

G. Piotto et al.Nov 15, 2024
ABSTRACT We present new observations from CHEOPS (CHaracterising ExOPlanet Satellite) and TESS (Transiting Exoplanet Survey Satellite) to clarify the architecture of the planetary system hosted by the old Galactic thick disc star TOI-561. Our global analysis, which also includes previously published photometric and radial velocity data, incontrovertibly proves that TOI-561 is hosting at least four transiting planets with periods of 0.44 d (TOI-561 b), 10.8 d (TOI-561 c), 25.7 d (TOI-561 d), and 77.1 d (TOI-561 e) and a fifth non-transiting candidate, TOI-561f with a period of 433 d. The precise characterization of TOI-561’s orbital architecture is interesting since old and metal-poor thick disc stars are less likely to host ultrashort-period super-Earths like TOI-561 b. The new period of planet -e is consistent with the value obtained using radial velocity alone and is now known to be $77.14399\pm 0.00025$ d, thanks to the new CHEOPS and TESS transits. The new data allowed us to improve its radius ($R_p = 2.517 \pm 0.045\,\mathrm{ R}_{\rm{\oplus }}$ from 5 per cent to 2 per cent precision) and mass ($M_p = 12.4 \pm 1.4\, \mathrm{ M}_{\rm{\oplus }}$) estimates, implying a density of $\rho _p = 0.778 \pm 0.097\, \rho _{\rm{\oplus }}$. Thanks to recent TESS observations and the focused CHEOPS visit of the transit of TOI-561 e, a good candidate for exomoon searches, the planet’s period is finally constrained, allowing us to predict transit times through 2030 with 20-min accuracy. We present an updated version of the internal structure of the four transiting planets. We finally performed a detailed stability analysis, which confirmed the long-term stability of the outer planet TOI-561 f.