JZ
Jiabi Zhang
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
255
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

HIF-1α protects against oxidative stress by directly targeting mitochondria

Hongsheng Li et al.Jan 15, 2019
The transcription factor hypoxia inducible factor-1α (HIF-1α) mediates adaptive responses to oxidative stress by nuclear translocation and regulation of gene expression. Mitochondrial changes are critical for the adaptive response to oxidative stress. However, the transcriptional and non-transcriptional mechanisms by which HIF-1α regulates mitochondria in response to oxidative stress are poorly understood. Here, we examined the subcellular localization of HIF-1α in human cells and identified a small fraction of HIF-1α that translocated to the mitochondria after exposure to hypoxia or H2O2 treatment. Moreover, the livers of mice with CCl4-induced fibrosis showed a progressive increase in HIF-1α association with the mitochondria, indicating the clinical relevance of this finding. To probe the function of this HIF-1α population, we ectopically expressed a mitochondrial-targeted form of HIF-1α (mito-HIF-1α). Expression of mito-HIF-1α was sufficient to attenuate apoptosis induced by exposure to hypoxia or H2O2-induced oxidative stress. Moreover, mito-HIF-1α expression reduced the production of reactive oxygen species, the collapse of mitochondrial membrane potential, and the expression of mitochondrial DNA-encoded mRNA in response to hypoxia or H2O2 treatment independently of nuclear pathways. These data suggested that mitochondrial HIF-1α protects against oxidative stress induced-apoptosis independently of its well-known role as a transcription factor.
0

A novel interplay between bacteria and metabolites in different early-stage lung cancer: an integrated microbiome and metabolome analysis

Xiaoqian Zhai et al.Jan 7, 2025
The carcinogenesis mechanism of early-stage lung cancer (ESLC) remains unclear. Microbial dysbiosis is closely related to tumor development. This study aimed to analyze the relationship between microbiota dysbiosis in ESLC. We investigated a total of 108 surgical specimens of lung nodules, including ground glass nodules (GGN) diagnosed as lung adenocarcinoma (n = 25), solid nodules (SN) diagnosed as lung adenocarcinoma (n = 27), lung squamous carcinoma (LUSC) presenting as solid nodules (n = 26), and benign pulmonary nodules (BPD) (n = 30) that were collected. 16S rDNA amplicon sequencing and non-targeted metabolomics analysis were performed in all of the specimens. We found a significantly lower microbiota richness in SN than in the GGN and LUSC. Ralstonia may be an important flora promoting the development of early lung adenocarcinoma, while Feacalibacterium and Blautia play a protective role in the progression of GGN to SN. Akkermansia, Escherichia-shigella, and Klebsiella exhibited high abundance in early lung squamous carcinoma. Compared with BPD, the differential metabolites of both early adenocarcinomas (SN and GGN) are mainly involved in energy metabolic pathways, while early LUSC is mainly involved in glutathione metabolism, producing and maintaining high levels of intracellular redox homeostasis. A correlation analysis revealed that different microbiota in GGN may function in energy metabolism via N-acetyl-1-aspartylglutamic acid (NAAG) when compared to BPD, while creatine and N-acetylmethionine were the main relevant molecules for the function of differential microbiota in LUSC. Our study identified that early-stage lung adenocarcinoma and squamous carcinoma differ in microbial composition and metabolic status. Ralstonia may be an important flora promoting the development of early lung adenocarcinoma, while Feacalibacterium and Blautia play a protective role in the progression of GGN to SN. Conversely, Akkermansia, Escherichia-shigella, and Klebsiella exhibited high abundance in early lung squamous carcinoma. The metabolites of both early adenocarcinomas (SN and GGN) are mainly involved in energy metabolic pathways, while early LUSC is mainly involved in glutathione metabolism. Our study provides new insights into the carcinogenesis of ESLC.