SS
Sung Son
Author with expertise in Conducting Polymer Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(0% Open Access)
Cited by:
712
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

High-Field-Effect Mobility of Low-Crystallinity Conjugated Polymers with Localized Aggregates

Sung Son et al.May 6, 2016
Charge carriers typically move faster in crystalline regions than in amorphous regions in conjugated polymers because polymer chains adopt a regular arrangement resulting in a high degree of π–π stacking in crystalline regions. In contrast, the random polymer chain orientation in amorphous regions hinders connectivity between conjugated backbones; thus, it hinders charge carrier delocalization. Various studies have attempted to enhance charge carrier transport by increasing crystallinity. However, these approaches are inevitably limited by the semicrystalline nature of conjugated polymers. Moreover, high-crystallinity conjugated polymers have proven inadequate for soft electronics applications because of their poor mechanical resilience. Increasing the polymer chain connectivity by forming localized aggregates via π-orbital overlap among several conjugated backbones in amorphous regions provides a more effective approach to efficient charge carrier transport. A simple strategy relying on the density of random copolymer alkyl side chains was developed to generate these localized aggregates. In this strategy, steric hindrance caused by these side chains was modulated to change their density. Interestingly, a random polymer exhibiting low alkyl side chain density and crystallinity displayed greatly enhanced field-effect mobility (1.37 cm2/(V·s)) compared with highly crystalline poly(3-hexylthiophene).
0

Hole Transport Materials in Conventional Structural (n–i–p) Perovskite Solar Cells: From Past to the Future

Guan‐Woo Kim et al.Jan 29, 2020
Abstract With the application of organic–inorganic hybrid perovskites to liquid‐type solar cells, the unprecedented development of perovskite solar cells (Per‐SCs) has been boosted by the introduction of solid‐state hole transport materials (HTMs). The removal of liquid electrolyte has lead to improved efficiency and stability. Supported by high‐quality perovskite films, the certified efficiency of Per‐SCs has reached 25.2%. For Per‐SCs assembled in a conventional structure (n–i–p), the hole transport layer (HTL) plays an extra role in preventing the perovskite layer from external stimuli. In summary, the successful design and fabrication of the HTL must meet various requirements in terms of solubility, hole transport, recombination prevention, stability, and reproducibility, to name but a few. Many research strategies are focused on the development of high‐performance HTMs to meet such requirements. Such strategies for the development of HTMs employed in conventional n–i–p solar cells are reviewed herein. A vision of the future HTMs is proposed in this review based on the already proposed solutions and current trends.
0

Green-Solvent-Processable, Dopant-Free Hole-Transporting Materials for Robust and Efficient Perovskite Solar Cells

Junwoo Lee et al.Aug 16, 2017
In addition to having proper energy levels and high hole mobility (μh) without the use of dopants, hole-transporting materials (HTMs) used in n-i-p-type perovskite solar cells (PSCs) should be processed using green solvents to enable environmentally friendly device fabrication. Although many HTMs have been assessed, due to the limited solubility of HTMs in green solvents, no green-solvent-processable HTM has been reported to date. Here, we report on a green-solvent-processable HTM, an asymmetric D-A polymer (asy-PBTBDT) that exhibits superior solubility even in the green solvent, 2-methylanisole, which is a known food additive. The new HTM is well matched with perovskites in terms of energy levels and attains a high μh (1.13 × 10-3 cm2/(V s)) even without the use of dopants. Using the HTM, we produced robust PSCs with 18.3% efficiency (91% retention after 30 days without encapsulation under 50%-75% relative humidity) without dopants; with dopants (bis(trifluoromethanesulfonyl) imide and tert-butylpyridine, a 20.0% efficiency was achieved. Therefore, it is a first report for a green-solvent-processable hole-transporting polymer, exhibiting the highest efficiencies reported so far for n-i-p devices with and without the dopants.