RS
R. Schindler
Author with expertise in Galaxy Formation and Evolution in the Universe
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
798
h-index:
46
/
i10-index:
92
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dark Energy Survey Year 1 results: weak lensing mass calibration of redMaPPer galaxy clusters

Thomas McClintock et al.Oct 4, 2018
We constrain the mass–richness scaling relation of redMaPPer galaxy clusters identified in the Dark Energy Survey Year 1 data using weak gravitational lensing. We split clusters into 4 × 3 bins of richness λ and redshift |$z$| for λ ≥ 20 and 0.2 ≤ |$z$| ≤ 0.65 and measure the mean masses of these bins using their stacked weak lensing signal. By modelling the scaling relation as 〈M200m|λ, |$z$|〉 = M0(λ/40)F((1 + |$z$|⁠)/1.35)G, we constrain the normalization of the scaling relation at the 5.0 per cent level, finding M0 = [3.081 ± 0.075(stat) ± 0.133(sys)] · 1014 M⊙ at λ = 40 and |$z$| = 0.35. The recovered richness scaling index is F = 1.356 ± 0.051 (stat) ± 0.008 (sys) and the redshift scaling index G = −0.30 ± 0.30 (stat) ± 0.06 (sys). These are the tightest measurements of the normalization and richness scaling index made to date from a weak lensing experiment. We use a semi-analytic covariance matrix to characterize the statistical errors in the recovered weak lensing profiles. Our analysis accounts for the following sources of systematic error: shear and photometric redshift errors, cluster miscentring, cluster member dilution of the source sample, systematic uncertainties in the modelling of the halo–mass correlation function, halo triaxiality, and projection effects. We discuss prospects for reducing our systematic error budget, which dominates the uncertainty on M0. Our result is in excellent agreement with, but has significantly smaller uncertainties than, previous measurements in the literature, and augurs well for the power of the DES cluster survey as a tool for precision cosmology and upcoming galaxy surveys such as LSST, Euclid, and WFIRST.
0

Dark Energy Survey year 1 results: Constraints on extended cosmological models from galaxy clustering and weak lensing

T. Abbott et al.Jun 7, 2019
We present constraints on extensions of the minimal cosmological models dominated by dark matter and dark energy, $\Lambda$CDM and $w$CDM, by using a combined analysis of galaxy clustering and weak gravitational lensing from the first-year data of the Dark Energy Survey (DES Y1) in combination with external data. We consider four extensions of the minimal dark energy-dominated scenarios: 1) nonzero curvature $\Omega_k$, 2) number of relativistic species $N_{\rm eff}$ different from the standard value of 3.046, 3) time-varying equation-of-state of dark energy described by the parameters $w_0$ and $w_a$ (alternatively quoted by the values at the pivot redshift, $w_p$, and $w_a$), and 4) modified gravity described by the parameters $\mu_0$ and $\Sigma_0$ that modify the metric potentials. We also consider external information from Planck CMB measurements; BAO measurements from SDSS, 6dF, and BOSS; RSD measurements from BOSS; and SNIa information from the Pantheon compilation. Constraints on curvature and the number of relativistic species are dominated by the external data; when these are combined with DES Y1, we find $\Omega_k=0.0020^{+0.0037}_{-0.0032}$ at the 68% confidence level, and $N_{\rm eff}<3.28\, (3.55)$ at 68% (95%) confidence. For the time-varying equation-of-state, we find the pivot value $(w_p, w_a)=(-0.91^{+0.19}_{-0.23}, -0.57^{+0.93}_{-1.11})$ at pivot redshift $z_p=0.27$ from DES alone, and $(w_p, w_a)=(-1.01^{+0.04}_{-0.04}, -0.28^{+0.37}_{-0.48})$ at $z_p=0.20$ from DES Y1 combined with external data; in either case we find no evidence for the temporal variation of the equation of state. For modified gravity, we find the present-day value of the relevant parameters to be $\Sigma_0= 0.43^{+0.28}_{-0.29}$ from DES Y1 alone, and $(\Sigma_0, \mu_0)=(0.06^{+0.08}_{-0.07}, -0.11^{+0.42}_{-0.46})$ from DES Y1 combined with external data, consistent with predictions from GR.
0

First cosmological results using Type Ia supernovae from the Dark Energy Survey: measurement of the Hubble constant

E. Macaulay et al.Apr 8, 2019
We present an improved measurement of the Hubble constant (H_0) using the 'inverse distance ladder' method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 < z < 0.85 to existing distance measurements of 122 low redshift (z < 0.07) SNe Ia (Low-z) and measurements of Baryon Acoustic Oscillations (BAOs). Whereas traditional measurements of H_0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H_0 = 67.8 +/- 1.3 km s-1 Mpc-1 (statistical and systematic uncertainties, 68% confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H_0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a LCDM universe (Planck Collaboration et al. 2018).