YC
Yuchao Chai
Author with expertise in Zeolite Chemistry and Catalysis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
463
h-index:
21
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Confinement in a Zeolite and Zeolite Catalysis

Yuchao Chai et al.Jun 24, 2021
ConspectusZeolites, accompanied by their initial discovery as natural mines and the subsequent large-scale commercial production, have played indispensable roles in various fields such as petroleum refining and the chemical industry. Understanding the characteristics of zeolites, in contrast to their counterparts with similar chemical compositions and the origin thereof, is always a hot and challenging topic. Zeolites are known as intrinsic confined systems with ordered channels on the molecular scale, and structural confinement has been proposed to explain the unique chemical behaviors of zeolites. Generally, the channels of zeolites can regulate the diffusion of molecules, leading to a visible difference in molecular transportation and the ultimate shape-selective catalysis. On the other hand, the local electric field within the zeolite channels or cages can act on the guest molecules and change their energy levels. Confinement can be simply interpreted from both spatial and electronic issues; however, the nature of zeolite confinement is ambiguous and needs to be clarified.In this Account, we make a concise summary and analysis of the topics of confinement in a zeolite and zeolite catalysis from two specific views of spatial constraint and a local electric field to answer two basic questions of why zeolites and what else can we do with zeolites. First, it is shown how to construct functional sites including Brønsted acid sites, Lewis acid sites, extraframework cation sites, and entrapped metal or oxide aggregates in zeolites via confinement and how to understand the specific role of confinement in their reactivity. Second, the multiple impacts of confinement in zeolite-catalyzed reactions are discussed, which rationally lead to several unique processes, namely, Brønsted acid catalysis confined in zeolites, Lewis acid catalysis confined in zeolites, catalysis by zeolite-confined coordinatively unsaturated cation sites, and a cascade reaction within the confined space of zeolites. Overall, confinement effects do exist in zeolite systems and have already played extremely important roles in adsorption and catalysis. Although confinement might exist in many systems, the confinement by zeolites is more straightforward thanks to their well-ordered and rigid structure, deriving unique chemical behaviors within the confined space of zeolites. A zeolite is a fantastic scaffold for constructing isolated sites spatially and electrostatically confined in its matrix. Furthermore, zeolites containing well-defined transition-metal sites can be treated as inorganometallic complexes (i.e., a zeolite framework as the ligand of transition-metal ions) and can catalyze reactions resembling organometallic complexes or even metalloenzymes. The local electric field within the confined space of zeolites is strong enough to induce or assist the activation of small molecules, following the working fashion of frustrated Lewis pairs. The tactful utilization of structural confinement, both spatially and electronically, becomes the key to robust zeolites for adsorption and catalysis.
0

Molecular Trapdoor in HEU Zeolite Enables Inverse CO2‐C2H2 Separation

Jizhen Jia et al.Nov 26, 2024
The adsorptive separation of molecules with very similar physical properties is always a challenging task. Reported herein is the design and tailoring of zeolite adsorbent for the precise discrimination and separation of CO2‐C2H2 mixture through the pronounced trapdoor effect. Typically, Sr exchanged K‐type clinoptilolite, namely Sr/K‐HEU, is developed as a robust zeolite adsorbent for inverse CO2‐C2H2 separation, showing the‐state‐of‐the‐art dynamic CO2/C2H2 selectivity of 48.0 and sustainable CO2 dynamic uptake of 0.96 mmol/g at the same time. The perfect recyclability and the intrinsic low‐cost nature of S/Kr‐HEU make it a promising candidate for practical applications. Three‐dimensional electron diffraction determines the precise structure of Sr/K‐HEU and density functional theory calculations reveal the intricate interplay between guest molecules and the gate‐keeping extraframework cations. Briefly, extraframework Sr2+ cations from the ten‐membered rings of HEU zeolites act as the molecular trapdoor, allowing the entry of CO2 molecules while excluding C2H2. This work presents a new example of molecular trapdoor in zeolite and its successful application in the challenging inverse CO2‐C2H2 separation, which not only expands the scope of molecular trapdoor concept but also improves current understanding on the nature of molecular trapdoor.
0

Molecular Trapdoor in HEU Zeolite Enables Inverse CO2‐C2H2 Separation

Jizhen Jia et al.Nov 26, 2024
The adsorptive separation of molecules with very similar physical properties is always a challenging task. Reported herein is the design and tailoring of zeolite adsorbent for the precise discrimination and separation of CO2-C2H2 mixture through the pronounced trapdoor effect. Typically, Sr exchanged K-type clinoptilolite, namely Sr/K-HEU, is developed as a robust zeolite adsorbent for inverse CO2-C2H2 separation, showing the-state-of-the-art dynamic CO2/C2H2 selectivity of 48.0 and sustainable CO2 dynamic uptake of 0.96 mmol/g at the same time. The perfect recyclability and the intrinsic low-cost nature of S/Kr-HEU make it a promising candidate for practical applications. Three-dimensional electron diffraction determines the precise structure of Sr/K-HEU and density functional theory calculations reveal the intricate interplay between guest molecules and the gate-keeping extraframework cations. Briefly, extraframework Sr2+ cations from the ten-membered rings of HEU zeolites act as the molecular trapdoor, allowing the entry of CO2 molecules while excluding C2H2. This work presents a new example of molecular trapdoor in zeolite and its successful application in the challenging inverse CO2-C2H2 separation, which not only expands the scope of molecular trapdoor concept but also improves current understanding on the nature of molecular trapdoor.