CG
Changjun Gu
Author with expertise in Global Flood Risk Assessment and Management
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Flooded Infrastructure Change Detection in Deeply Supervised Networks Based on Multi-Attention-Constrained Multi-Scale Feature Fusion

Gang Qin et al.Nov 20, 2024
Flood disasters are frequent, sudden, and have significant chain effects, seriously damaging infrastructure. Remote sensing images provide a means for timely flood emergency monitoring. When floods occur, emergency management agencies need to respond quickly and assess the damage. However, manual evaluation takes a significant amount of time; in current, commercial applications, the post-disaster flood vector range is used to directly overlay land cover data. On the one hand, land cover data are not updated in time, resulting in the misjudgment of disaster losses; on the other hand, since buildings block floods, the above methods cannot detect flooded buildings. Automated change-detection methods can effectively alleviate the above problems. However, the ability of change-detection structures and deep learning models for flooding to characterize flooded buildings and roads is unclear. This study specifically evaluated the performance of different change-detection structures and different deep learning models for the change detection of flooded buildings and roads in very-high-resolution remote sensing images. At the same time, a plug-and-play, multi-attention-constrained, deeply supervised high-dimensional and low-dimensional multi-scale feature fusion (MSFF) module is proposed. The MSFF module was extended to different deep learning models. Experimental results showed that the embedded MSFF performs better than the baseline model, demonstrating that MSFF can be used as a general multi-scale feature fusion component. After FloodedCDNet introduced MSFF, the detection accuracy of flooded buildings and roads changed after the data augmentation reached a maximum of 69.1% MIoU. This demonstrates its effectiveness and robustness in identifying change regions and categories from very-high-resolution remote sensing images.
0

Estimating Water Depth of Different Waterbodies Using Deep Learning Super Resolution from HJ-2 Satellite Hyperspectral Images

Shuangyin Zhang et al.Dec 8, 2024
Hyperspectral remote sensing images offer a unique opportunity to quickly monitor water depth, but how to utilize the enriched spectral information and improve its spatial resolution remains a challenge. We proposed a water depth estimation framework to improve spatial resolution using deep learning and four inversion methods and verified the effectiveness of different super resolution and inversion methods in three waterbodies based on HJ-2 hyperspectral images. Results indicated that it was feasible to use HJ-2 hyperspectral images with a higher spatial resolution via super resolution methods to estimate water depth. Deep learning improves the spatial resolution of hyperspectral images from 48 m to 24 m and shows less information loss with peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and spectral angle mapper (SAM) values of approximately 37, 0.92, and 2.42, respectively. Among four inversion methods, the multilayer perceptron demonstrates superior performance for the water reservoir, achieving the mean absolute error (MAE) and the mean absolute percentage error (MAPE) of 1.292 m and 22.188%, respectively. For two rivers, the random forest model proves to be the best model, with an MAE of 0.750 m and an MAPE of 10.806%. The proposed method can be used for water depth estimation of different water bodies and can improve the spatial resolution of water depth mapping, providing refined technical support for water environment management and protection.