MX
Mingnan Xu
Author with expertise in Hydrogen Energy Systems and Technologies
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Offshore Wind Power—Seawater Electrolysis—Salt Cavern Hydrogen Storage Coupling System: Potential and Challenges

Xiaoyi Liu et al.Jan 3, 2025
Offshore wind power construction has seen significant development due to the high density of offshore wind energy and the minimal terrain restrictions for offshore wind farms. However, integrating this energy into the grid remains a challenge. The scientific community is increasingly focusing on hydrogen as a means to enhance the integration of these fluctuating renewable energy sources. This paper reviews the research on renewable energy power generation, water electrolysis for hydrogen production, and large-scale hydrogen storage. By integrating the latest advancements, we propose a system that couples offshore wind power generation, seawater electrolysis (SWE) for hydrogen production, and salt cavern hydrogen storage. This coupling system aims to address practical issues such as the grid integration of offshore wind power and large-scale hydrogen storage. Regarding the application potential of this coupling system, this paper details the advantages of developing renewable energy and hydrogen energy in Jiangsu using this system. While there are still some challenges in the application of this system, it undeniably offers a new pathway for coastal cities to advance renewable energy development and sets a new direction for hydrogen energy progress.
0

Experimental study on creep characteristics of electrolyte-bearing salt rock under long-term triaxial cyclic loading

Si Huang et al.Nov 20, 2024
During the operation of the Salt Cavern Flow Battery (SCFB) system, the rock surrounding a salt cavern is subjected to erosion by the electrolyte. To study the creep characteristics of electrolyte-bearing salt rock under long-term triaxial cyclic loading in SCFB, a triaxial creep experiment with a cycle period of 1 day was conducted. The results indicated that, when not subjected to failure, the axial stress-strain curve of electrolyte-bearing sample undergoes only two phases of “sparse-dense”, entering dense phase approximately 4 cycles earlier than that of sample without electrolyte. Under the same stress conditions, the strain generated in electrolyte-bearing salt rock surpasses that of sample without electrolyte, demonstrating an initial rapid increase followed by a gradual stabilization trend. The stress-strain curve of electrolyte-bearing sample in a single cycle can be divided into six stages. The number of cycles has almost no effect on the axial strain in stages I, IV, V and VI, and the axial strain in stages IV and VI is basically 0. Additionally, the elastic deformation generated in stage I is basically recovered in stage V. The strain in stage II gradually decreases and disappears in the 4th cycle, which is 13 cycles earlier than that of the sample without electrolyte. The creep rate of electrolyte-bearing sample shows a trend of “gradual decrease—basically stabilization” as the number of cycles increases, and the creep experiment contains only the decay creep stage and steady creep stage. Irreversible deformation of electrolyte-bearing sample exhibits a gradual decrease followed by stabilization with increasing number of cycles. The research findings hold significant implications for the stability analysis of SCFB systems.