CM
Chenxi Mi
Author with expertise in Hydrological Modeling and Water Resource Management
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
0
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Catchments Amplify Reservoir Thermal Response to Climate Warming

Bo Gai et al.Jan 1, 2025
Abstract Lentic waters integrate atmosphere and catchment processes, and thus ultimately capture climate signals. However, studies of climate warming effects on lentic waters usually do not sufficiently account for a change in heat flux from the catchment through altered inflow temperature and discharge under climate change. This is particularly relevant for reservoirs, which are highly impacted by catchment hydrology and may be affected by upstream reservoirs or pre‐dams. This study explicitly quantified how the catchment and pre‐dams modify the thermal response of Rappbode Reservoir, Germany's largest drinking water reservoir system, to climate change. We established a catchment‐lake modeling chain in the main reservoir and its two pre‐dams utilizing the lake model GOTM, the catchment model mHM, and the stream temperature model Air2stream, forced by an ensemble of climate projections under RCP2.6 and 8.5 warming scenarios. Results exhibited a warming of 0.27/0.15°C decade −1 for the surface/bottom temperatures of the main reservoir, with approximately 8%/24% of this warming attributed to the catchment warming, respectively. The catchment warming amplified the deep water warming more than at the surface, contrary to the atmospheric warming effect, and advanced stratification by about 1 week, while having a minor impact on stratification intensity. On the other hand, pre‐dams reduced the inflow temperature into the main reservoir in spring, and consequently lowered the hypolimnetic temperature and postponed stratification onset. This shielded the main reservoir from climate warming, although overall the contribution of pre‐dams was minimal. Altogether, our study highlights the importance of catchment alterations and seasonality when projecting reservoir warming, and provides insights into catchment‐reservoir coupling under climate change.
0

Combining a Multi‐Lake Model Ensemble and a Multi‐Domain CORDEX Climate Data Ensemble for Assessing Climate Change Impacts on Lake Sevan

Muhammed Shikhani et al.Nov 1, 2024
Abstract Global warming is shifting the thermal dynamics of lakes, with resulting climatic variability heavily affecting their mixing dynamics. We present a dual ensemble workflow coupling climate models with lake models. We used a large set of simulations across multiple domains, multi‐scenario, and multi GCM‐ RCM combinations from CORDEX data. We forced a set of multiple hydrodynamic lake models by these multiple climate simulations to explore climate change impacts on lakes. We also quantified the contributions from the different models to the overall uncertainty. We employed this workflow to investigate the effects of climate change on Lake Sevan (Armenia). We predicted for the end of the 21st century, under RCP 8.5, a sharp increase in surface temperature and substantial bottom warming , longer stratification periods (+55 days) and disappearance of ice cover leading to a shift in mixing regime. Increased insufficient cooling during warmer winters points to the vulnerability of Lake Sevan to climate change. Our workflow leverages the strengths of multiple models at several levels of the model chain to provide a more robust projection and at the same time a better uncertainty estimate that accounts for the contributions of the different model levels to overall uncertainty. Although for specific variables, for example, summer bottom temperature, single lake models may perform better, the full ensemble provides a robust estimate of thermal dynamics that has a high transferability so that our workflow can be a blueprint for climate impact studies in other systems.
0
0
Save