LL
Lin Lu
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(0% Open Access)
Cited by:
205
h-index:
18
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Molecular structures of residual solvent in polyacrylonitrile based electrolytes: Implications for conductivity and stability

Lin Lu et al.Nov 22, 2024
Lithium-ion batteries increasingly play significant roles in modern technologies; however, increased energy density also raises concerns about electrolyte safety. Traditional electrolytes that use volatile organic solvents face risks of thermal runaways and fires from electrode shorting. In response, polymer-based solid electrolytes have been developed for replacement. Polyacrylonitrile (PAN) is a promising fire-resistant component for electrolyte fabrication, but its limited solubility necessitates using low-volatility solvents, which are notoriously difficult to remove in subsequent drying processes. Here, we use femtosecond two-dimensional infrared spectroscopy to provide an in-depth understanding of how residual solvent from processing affects the molecular structures and dynamics within a polymer electrolyte. To this end, linear and nonlinear infrared spectroscopies are employed to interrogate the molecular interactions in PAN-based electrolytes containing various contents of N,N-dimethylformamide (DMF). We show that the amount of DMF within the PAN electrolyte affects the Li+ structure. The coordination can proceed through the carbonyl group and/or the amide nitrogen to form antiparallel structures with the nitrile groups of PAN through dipole–dipole interactions. The free motion of DMF is drastically inhibited upon interaction with Li+ and PAN, which decreases the ionic conductivity and potentially affects the stability (resistance toward removal and chemical decomposition). These findings have implications for the design and processing of solid polymer electrolytes.
0

Conformationally Adaptable Extractant Flexes Strong Lanthanide Reverse-Size Selectivity

Md Islam et al.Jan 2, 2025
Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA). This novel ligand forms pseudocyclic molecular complexes with lanthanide ions at organic/aqueous interfaces, revealed by vibrational sum frequency generation spectroscopy. These complexes are extracted into the organic phase, where femtosecond structural dynamics are probed by two-dimensional infrared spectroscopy and ab initio molecular dynamics simulations to mechanistically frame the macroscopic selectivity trends. We find larger-than-expected structural fluctuations and bond lengths for heavy Ln-ODA complexes that arise from an inability of ODA to contort around the smaller ions to satisfy all would-be bonding interactions, despite forming some individually strong bonds. This finding contrasts with the binding of ODA with lighter lanthanides where, despite individually weaker bonds, collective interactions manifest that minimize structural fluctuations and give rise to enhanced thermodynamic stability. These results point to a new paradigm where conformational dynamics and cumulative bonding interactions can be used to facilitate unconventional chemical transformations.