Raquel Adaia Sandoval OrtegaVerified
Verified Account
Verified
PhD in Neuroscience | Postdoctoral researcher at UPenn Perelman School of Medicine | Focus on the interactions between pain and sleep | Data Analyst at heart
PhD '23, Universität Bern
Member for 27 days
I'm a Neuroscientist researching the interaction between pain and sleep. I use in vivo electrophysiology and calcium imaging via miniscopes to understand pain-induced network changes that cause sleep disturbances. I design and write my own analysis code. Besides my research I designed and teach the...
Show more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
3
h-index:
5
/
i10-index:
2
Reputation
Physiology
3%
Biophysics
2%
Biology
< 1%
Show more
How is this calculated?
Publications
0

Mimicking opioid analgesia in cortical pain circuits

Justin James et al.Apr 29, 2024
The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive. Given the complexity of pain as a sensory and emotional experience, and the richness of ethological pain-related behaviors, we developed a standardized, deep-learning platform for deconstructing the behavior dynamics associated with the affective component of pain in mice-LUPE (Light aUtomated Pain Evaluator). LUPE removes human bias in behavior quantification and accelerated analysis from weeks to hours, which we leveraged to discover that morphine altered attentional and motivational pain behaviors akin to affective analgesia in humans. Through activity-dependent genetics and single-nuclei RNA sequencing, we identified specific ensembles of nociceptive cingulate neuron-types expressing mu-opioid receptors. Tuning receptor expression in these cells bidirectionally modulated morphine analgesia. Moreover, we employed a synthetic opioid receptor promoter-driven approach for cell-type specific optical and chemical genetic viral therapies to mimic morphine's pain-relieving effects in the cingulate, without reinforcement. This approach offers a novel strategy for precision pain management by targeting a key nociceptive cortical circuit with on-demand, non-addictive, and effective analgesia.
0
Citation2
0
Save
0

AxoDen: An Algorithm for the Automated Quantification of Axonal Density in defined Brain Regions

Raquel Adaia Sandoval Ortega et al.May 31, 2024
Abstract The rodent brain contains 70,000,000+ neurons interconnected via complex axonal circuits with varying architectures. Neural pathologies are often associated with anatomical changes in these axonal projections and synaptic connections. Notably, axonal density variations of local and long-range projections increase or decrease as a function of the strengthening or weakening, respectively, of the information flow between brain regions. Traditionally, histological quantification of axonal inputs relied on assessing the mean fluorescence intensity within a rectangle placed in the brain region-of-inter-est. Despite yielding valuable insights, this conventional method is notably susceptible to background fluorescence, post-acquisition adjustments, and inter-researcher variability. Additionally, it fails to account for the non-uniform innervation across brain regions, thus overlooking critical data such as innervation percentages and axonal distribution patterns. In response to these challenges, we introduce AxoDen, an open-source semi-automated platform designed to increase the speed and rigor of axon quantifications for basic neuroscience discovery. AxoDen processes user-defined brain regions-of-interests incorporating dynamic thresholding of grayscales-transformed images to facilitate binarized pixel measure-ments. Thereby AxoDen segregates the image content into signal and non-signal categories, effectively eliminating background interference and enabling the exclusive measurement of fluorescence from axonal projections. AxoDen provides detailed and accurate representations of axonal density and spatial distribution. AxoDen’s advanced yet user-friendly platform enhances the reliability and efficiency of axonal density analysis and facilitates access to unbiased high-quality data analysis with no technical background or coding experience required. AxoDen is freely available to everyone as a valuable neuroscience tool for dissecting axonal innervation patterns in precisely defined brain regions.
0

Interactive effects of pain and arousal state on heart rate and cortical activity in the mouse anterior cingulate and somatosensory cortices

R. Ortega et al.Jan 1, 2024
Sensory disconnection is a hallmark of sleep, yet the cortex retains some ability to process sensory information. Acute noxious stimulation during sleep increases the heart rate and the likelihood of awakening, indicating that certain mechanisms for pain sensing and processing remain active. However, processing of somatosensory information, including pain, during sleep remains underexplored. To assess somatosensation in natural sleep, we simultaneously recorded heart rate and local field potentials in the anterior cingulate (ACC) and somatosensory (S1) cortices of naïve, adult male mice, while applying noxious and non-noxious stimuli to their hind paws throughout their sleep-wake cycle. Noxious stimuli evoked stronger heart rate increases in both wake and non-rapid eye movement sleep (NREMS), and resulted in larger awakening probability in NREMS, as compared to non-noxious stimulation, suggesting differential processing of noxious and non-noxious information during sleep. Somatosensory information differentially reached S1 and ACC in sleep, eliciting complex transient and sustained responses in the delta, alpha, and gamma frequency bands as well as somatosensory evoked potentials. These dynamics depended on sleep state, the behavioral response to the stimulation and stimulation intensity (non-noxious vs. noxious). Furthermore, we found a correlation of the heart rate with the gamma band in S1 in the absence of a reaction in wake and sleep for noxious stimulation. These findings confirm that somatosensory information, including nociception, is sensed and processed during sleep even in the absence of a behavioral response.