Alberto CuociVerified
Verified Account
Verified
Chemical Engineering PhD '08, Polytechnic Institute of Milan
+ 1 more
Member for 1 month and 4 days
I am a Full Professor of Chemical Engineering at Politecnico di Milano, working on numerical modeling of reactive flows with detailed kinetics, with a specific focus on the formation and emissions of pollutants (NOx, PAHs, and soot). I am the main developer of OpenSMOKE++, a comprehensive framework...
Show more
Achievements
Cited Author
Peer Reviewer
Key Stats
Upvotes received:
0
Publications:
162
(46% Open Access)
Cited by:
8,364
h-index:
48
/
i10-index:
103
Reputation
Fluid Flow And Transfer Processes
79%
Computational Mechanics
76%
Pollution
76%
Show more
How is this calculated?
Publications
0

Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass‐Derived Transportation Fuels

E. Ranzi et al.Jul 25, 2014
ABSTRACT The kinetic modeling of the pyrolysis and combustion of liquid transportation fuels is a very complex task for two different reasons: the challenging characterization of the complex mixture of several hydrocarbon isomers and the complexity of the oxidation mechanisms of large hydrocarbon and oxygenated molecules. While surrogate mixtures of reference components allow to tackle the first difficulty, the complex behavior of the oxidation mechanisms is mostly overcome by reducing the total number of involved species by adopting a lumping approach. After a first investigation of the different liquid fuels (gasoline, kerosene, and diesel fuels), a short discussion on the lumping techniques allows to highlight the advantages of this approach. The lumped POLIMI pyrolysis and oxidation mechanism of hydrocarbon and oxygenated fuels is then used for generating several skeletal mechanisms for typical surrogate mixtures, moving from pure n ‐heptane up to heavy diesel fuels. These skeletal models are simply reduced with a reaction flux analysis, and they involve between 100 and 200 species. While these sizes already allow detailed computational fluid dynamics (CFD) calculations in internal combustion engines, further reduction phases are necessary when the interest is toward more complex CFD computations. To maintain the standard structure of the skeletal mechanisms, successive reduction phases are not considered. Moreover, new regulations pushed toward a greater use of renewable fuels. For these reasons, the skeletal models are also extended to biogasolines including methanol, ethanol, and n ‐butanol. Similarly, skeletal models of diesel and biodiesel fuels, including methyl esters, are also provided. Several comparisons with experimental data and complete validations in the operating range of internal combustion engines are also reported. The whole set of comparisons with experimental data obtained in a wide range of conditions not only validate the reduced models of specific transportation fuels but also the complete kinetic scheme POLIMI_1404.
Load More