HP
Hongjian PuVerified
Verified Account
Verified
Member for 30 days
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
40
(70% Open Access)
Cited by:
2,241
h-index:
25
/
i10-index:
27
Reputation
Neurology
76%
Molecular Biology
75%
Developmental Neuroscience
63%
Show more
How is this calculated?
Publications
0

Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury

Yejie Shi et al.Jan 27, 2016
Abstract The mechanism and long-term consequences of early blood–brain barrier (BBB) disruption after cerebral ischaemic/reperfusion (I/R) injury are poorly understood. Here we discover that I/R induces subtle BBB leakage within 30–60 min, likely independent of gelatinase B/MMP-9 activities. The early BBB disruption is caused by the activation of ROCK/MLC signalling, persistent actin polymerization and the disassembly of junctional proteins within microvascular endothelial cells (ECs). Furthermore, the EC alterations facilitate subsequent infiltration of peripheral immune cells, including MMP-9-producing neutrophils/macrophages, resulting in late-onset, irreversible BBB damage. Inactivation of actin depolymerizing factor (ADF) causes sustained actin polymerization in ECs, whereas EC-targeted overexpression of constitutively active mutant ADF reduces actin polymerization and junctional protein disassembly, attenuates both early- and late-onset BBB impairment, and improves long-term histological and neurological outcomes. Thus, we identify a previously unexplored role for early BBB disruption in stroke outcomes, whereby BBB rupture may be a cause rather than a consequence of parenchymal cell injury.
0

n-3 PUFA supplementation benefits microglial responses to myelin pathology

Songela Chen et al.Dec 12, 2014
Microglia represent rational but challenging targets for improving white matter integrity because of their dualistic protective and toxic roles. The present study examines the effect of Omega-3 polyunsaturated fatty acids (n-3 PUFAs) on microglial responses to myelin pathology in primary cultures and in the cuprizone mouse model of multiple sclerosis (MS), a devastating demyelination disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), the two main forms of n-3 PUFAs in the brain, inhibited the release of nitric oxide and tumor necrosis factor-α from primary microglia upon IFN-γ and myelin stimulation. DHA and EPA also enhanced myelin phagocytosis in vitro. Therefore, n-3 PUFAs can inhibit inflammation while at the same time enhancing beneficial immune responses such as microglial phagocytosis. In vivo studies demonstrated that n-3 PUFA supplementation reduced cuprizone-induced demyelination and improved motor and cognitive function. The positive effects of n-3 PUFAs were accompanied by a shift in microglial polarization toward the beneficial M2 phenotype both in vitro and in vivo. These results suggest that n-3 PUFAs may be clinically useful as immunomodulatory agents for demyelinating diseases through a novel mechanism involving microglial phenotype switching.
0

Omega-3 Polyunsaturated Fatty Acid Supplementation Improves Neurologic Recovery and Attenuates White Matter Injury after Experimental Traumatic Brain Injury

Hongjian Pu et al.Jun 26, 2013
Dietary supplementation with omega-3 (ω-3) fatty acids is a safe, economical mean of preventive medicine that has shown protection against several neurologic disorders. The present study tested the hypothesis that this method is protective against controlled cortical impact (CCI). Indeed, mice fed with ω-3 polyunsaturated fatty acid (PUFA)-enriched diet for 2 months exhibited attenuated short and long-term behavioral deficits due to CCI. Although ω-3 PUFAs did not decrease cortical lesion volume, these fatty acids did protect against hippocampal neuronal loss after CCI and reduced pro-inflammatory response. Interestingly, ω-3 PUFAs prevented the loss of myelin basic protein (MPB), preserved the integrity of the myelin sheath, and maintained the nerve fiber conductivity in the CCI model. ω-3 PUFAs also directly protected oligodendrocyte cultures from excitotoxicity and blunted the microglial activation-induced death of oligodendrocytes in microglia/oligodendrocyte cocultures. In sum, ω-3 PUFAs elicit multifaceted protection against behavioral dysfunction, hippocampal neuronal loss, inflammation, and loss of myelination and impulse conductivity. The present report is the first demonstration that ω-3 PUFAs protect against white matter injury in vivo and in vitro. The protective impact of ω-3 PUFAs supports the clinical use of this dietary supplement as a prophylaxis against traumatic brain injury and other nervous system disorders.
0

Endothelium-Targeted Deletion of microRNA-15a/16-1 Promotes Poststroke Angiogenesis and Improves Long-Term Neurological Recovery

Ping Sun et al.Mar 18, 2020
Angiogenesis promotes neurological recovery after stroke and is associated with longer survival of stroke patients. Cerebral angiogenesis is tightly controlled by certain microRNAs (miRs), such as the miR-15a/16-1 cluster, among others. However, the function of the miR-15a/16-1 cluster in endothelium on postischemic cerebral angiogenesis is not known.To investigate the functional significance and molecular mechanism of endothelial miR-15a/16-1 cluster on angiogenesis in the ischemic brain.Endothelial cell-selective miR-15a/16-1 conditional knockout (EC-miR-15a/16-1 cKO) mice and wild-type littermate controls were subjected to 1 hour middle cerebral artery occlusion followed by 28-day reperfusion. Deletion of miR-15a/16-1 cluster in endothelium attenuates post-stroke brain infarction and atrophy and improves the long-term sensorimotor and cognitive recovery against ischemic stroke. Endothelium-targeted deletion of the miR-15a/16-1 cluster also enhances post-stroke angiogenesis by promoting vascular remodeling and stimulating the generation of newly formed functional vessels, and increases the ipsilateral cerebral blood flow. Endothelial cell-selective deletion of the miR-15a/16-1 cluster up-regulated the protein expression of pro-angiogenic factors VEGFA (vascular endothelial growth factor), FGF2 (fibroblast growth factor 2), and their receptors VEGFR2 (vascular endothelial growth factor receptor 2) and FGFR1 (fibroblast growth factor receptor 1) after ischemic stroke. Consistently, lentiviral knockdown of the miR-15a/16-1 cluster in primary mouse or human brain microvascular endothelial cell cultures enhanced in vitro angiogenesis and up-regulated pro-angiogenic proteins expression after oxygen-glucose deprivation, whereas lentiviral overexpression of the miR-15a/16-1 cluster suppressed in vitro angiogenesis and down-regulated pro-angiogenic proteins expression. Mechanistically, miR-15a/16-1 translationally represses pro-angiogenic factors VEGFA, FGF2, and their receptors VEGFR2 and FGFR1, respectively, by directly binding to the complementary sequences within 3'-untranslated regions of those messenger RNAs.Endothelial miR-15a/16-1 cluster is a negative regulator for postischemic cerebral angiogenesis and long-term neurological recovery. Inhibition of miR-15a/16-1 function in cerebrovascular endothelium may be a legitimate therapeutic approach for stroke recovery.
0
Citation100
0
Save
0

Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury

Yun Wu et al.Jun 30, 2017
Scaffolds composed of extracellular matrix (ECM) are being investigated for their ability to facilitate brain tissue remodeling and repair following injury. The present study tested the hypothesis that the implantation of brain-derived ECM would attenuate experimental traumatic brain injury (TBI) and explored potential underlying mechanisms. TBI was induced in mice by a controlled cortical impact (CCI). ECM was isolated from normal porcine brain tissue by decellularization methods, prepared as a hydrogel, and injected into the ipsilesional corpus callosum and striatum 1 h after CCI. Lesion volume and neurological function were evaluated up to 35 d after TBI. Immunohistochemistry was performed to assess post-TBI white matter integrity, reactive astrogliosis, and microglial activation. We found that ECM treatment reduced lesion volume and improved neurobehavioral function. ECM-treated mice showed less post-TBI neurodegeneration in the hippocampus and less white matter injury than control, vehicle-treated mice. Furthermore, ECM ameliorated TBI-induced gliosis and microglial pro-inflammatory responses, thereby providing a favorable microenvironment for tissue repair. Our study indicates that brain ECM hydrogel implantation improved the brain microenvironment that facilitates post-TBI tissue recovery. Brain ECM offers excellent biocompatibility and holds potential as a therapeutic agent for TBI, alone or in combination with other treatments.
0
Citation66
0
Save
Load More