ES
E. Siskind
Author with expertise in High-Energy Astrophysics and Particle Acceleration Studies
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
426
h-index:
44
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MINUTE-TIMESCALE >100 MeV γ-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE

M. Ackermann et al.Jun 14, 2016
On 2015 June 16, Fermi-LAT observed a giant outburst from the flat spectrum radio quasar 3C 279 with a peak $>100$ MeV flux of $\sim3.6\times10^{-5}\;{\rm photons}\;{\rm cm}^{-2}\;{\rm s}^{-1}$ averaged over orbital period intervals. It is the historically highest $\gamma$-ray flux observed from the source including past EGRET observations, with the $\gamma$-ray isotropic luminosity reaching $\sim10^{49}\;{\rm erg}\;{\rm s}^{-1}$. During the outburst, the Fermi spacecraft, which has an orbital period of 95.4 min, was operated in a special pointing mode to optimize the exposure for 3C 279. For the first time, significant flux variability at sub-orbital timescales was found in blazar observations by Fermi-LAT. The source flux variability was resolved down to 2-min binned timescales, with flux doubling times less than 5 min. The observed minute-scale variability suggests a very compact emission region at hundreds of Schwarzschild radii from the central engine in conical jet models. A minimum bulk jet Lorentz factor ($\Gamma$) of 35 is necessary to avoid both internal $\gamma$-ray absorption and super-Eddington jet power. In the standard external-radiation-Comptonization scenario, $\Gamma$ should be at least 50 to avoid overproducing the synchrotron-self-Compton component. However, this predicts extremely low magnetization ($\sim5\times10^{-4}$). Equipartition requires $\Gamma$ as high as 120, unless the emitting region is a small fraction of the dissipation region. Alternatively, we consider $\gamma$ rays originating as synchrotron radiation of $\gamma_{\rm e}\sim1.6\times10^6$ electrons, in magnetic field $B\sim1.3$ kG, accelerated by strong electric fields $E\sim B$ in the process of magnetoluminescence. At such short distance scales, one cannot immediately exclude production of $\gamma$ rays in hadronic processes.
0

Periodic Gamma-Ray Modulation of the Blazar PG 1553+113 Confirmed by Fermi-LAT and Multiwavelength Observations

S. Abdollahi et al.Nov 25, 2024
Abstract A 2.1 yr periodic oscillation of the gamma-ray flux from the blazar PG 1553+113 has previously been tentatively identified in ∼7 yr of data from the Fermi Large Area Telescope. After 15 yr of Fermi sky-survey observations, doubling the total time range, we report >7 cycle gamma-ray modulation with an estimated significance of 4 σ against stochastic red noise. Independent determinations of oscillation period and phase in the earlier and the new data are in close agreement (chance probability <0.01). Pulse timing over the full light curve is also consistent with a coherent periodicity. Multiwavelength new data from Swift X-Ray Telescope, Burst Alert Telescope, and UVOT, and from KAIT, Catalina Sky Survey, All-Sky Automated Survey for Supernovae, and Owens Valley Radio Observatory ground-based observatories as well as archival Rossi X-Ray Timing Explorer satellite-All Sky Monitor data, published optical data of Tuorla, and optical historical Harvard plates data are included in our work. Optical and radio light curves show clear correlations with the gamma-ray modulation, possibly with a nonconstant time lag for the radio flux. We interpret the gamma-ray periodicity as possibly arising from a pulsational accretion flow in a sub-parsec binary supermassive black hole system of elevated mass ratio, with orbital modulation of the supplied material and energy in the jet. Other astrophysical scenarios introduced include instabilities, disk and jet precession, rotation or nutation, and perturbations by massive stars or intermediate-mass black holes in polar orbit.