HY
Haizheng Yu
Author with expertise in Deep Learning in Computer Vision and Image Recognition
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
0
h-index:
1
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

End to end polysemantic cooperative mixed task trainer for UAV target detection

Xueying Liao et al.Nov 30, 2024
With the rapid advancement and application of Unmanned Aerial Vehicles (UAVs), target detection in urban scenes has made significant progress. Achieving precise 3D reconstruction from oblique imagery is essential for accurate urban object detection in UAV images. However, challenges persist due to low detection accuracy caused by subtle target features, complex backgrounds, and the prevalence of small targets. To address these issues, we introduce the Polysemantic Cooperative Detection Transformer (Pc-DETR), a novel end-to-end UAV image target detection network. Our primary innovation, the Polysemantic Transformer (PoT) Backbone, enhances visual representation by leveraging contextual information to guide a dynamic attention matrix. This matrix, formed through convolutions, captures both static and dynamic features, resulting in superior detection. Additionally, we propose the Polysemantic Cooperative Mixed-Task Training scheme, which employs multiple auxiliary heads for diverse label assignments, boosting the encoder's learning capacity. This approach customizes queries and optimizes training efficiency without increasing inference costs. Comparative experiments show that Pc-DETR achieves a 3% improvement in detection accuracy over the current state-of-the-art MFEFNet, setting a new benchmark in UAV image detection and advancing methodologies for intelligent UAV surveillance systems.
0

Hyperbolic Sine Function Control-Based Finite-Time Bipartite Synchronization of Fractional-Order Spatiotemporal Networks and Its Application in Image Encryption

Lvming Liu et al.Jan 13, 2025
This work is devoted to the hyperbolic sine function (HSF) control-based finite-time bipartite synchronization of fractional-order spatiotemporal networks and its application in image encryption. Initially, the addressed networks adequately take into account the nature of anisotropic diffusion, i.e., the diffusion matrix can be not only non-diagonal but also non-square, without the conservative requirements in plenty of the existing literature. Next, an equation transformation and an inequality estimate for the anisotropic diffusion term are established, which are fundamental for analyzing the diffusion phenomenon in network dynamics. Subsequently, three control laws are devised to offer a detailed discussion for HSF control law’s outstanding performances, including the swifter convergence rate, the tighter bound of the settling time and the suppression of chattering. Following this, by a designed chaotic system with multi-scroll chaotic attractors tested with bifurcation diagrams, Poincaré map, and Turing pattern, several simulations are pvorided to attest the correctness of our developed findings. Finally, a formulated image encryption algorithm, which is evaluated through imperative security tests, reveals the effectiveness and superiority of the obtained results.