Qingyu LuoVerified
Verified Account
Verified
M.D., Ph.D., Mad Scientist Defying Cancer
Clinical Medicine MD '15, Dalian Medical University
+ 1 more
Member for 30 days
I am a cancer biologist who has devoted himself to the study of human malignancies for several years. Research is the most exciting job for me as I can enjoy scientific games every day and at the same time provide more opportunities for the treatment of cancers. My ultimate aim is to reveal patholog...
Show more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
34
(85% Open Access)
Cited by:
527
h-index:
15
/
i10-index:
16
Reputation
Molecular Biology
72%
Cell Biology
18%
Cancer Research
12%
Show more
How is this calculated?
Publications
1

OTUD1 Activates Caspase‐Independent and Caspase‐Dependent Apoptosis by Promoting AIF Nuclear Translocation and MCL1 Degradation

Aiping Luo et al.Feb 8, 2021
Abstract Apoptosis‐inducing factor (AIF) plays a dual role in regulating cell survival and apoptosis, acting as a prosurvival factor in mitochondria via its NADH oxidoreductase activity and activating the caspase‐independent apoptotic pathway (i.e., parthanatos) after nuclear translocation. However, whether one factor conjunctively controls the separated functions of AIF is not clear. Here, it is shown that OTU deubiquitinase 1 (OTUD1) acts as a link between the two functions of AIF via deubiquitination events. Deubiquitination of AIF at K244 disrupts the normal mitochondrial structure and compromises oxidative phosphorylation, and deubiquitination of AIF at K255 enhances its DNA‐binding ability to promote parthanatos. Moreover, OTUD1 stabilizes DDB1 and CUL4 associated factor 10 (DCAF10) and recruits the cullin 4A (CUL4A)‐damage specific DNA binding protein 1 (DDB1) complex to promote myeloid cell leukemia sequence 1 (MCL1) degradation, thereby activating caspase‐dependent apoptotic signaling. Collectively, these results reveal the central role of OTUD1 in activating both caspase‐independent and caspase‐dependent apoptotic signaling and propose decreased OTUD1 expression as a key event promoting chemoresistance in esophageal squamous cell carcinoma.
1
Citation56
0
Save
1

ARID1A Hypermethylation Disrupts Transcriptional Homeostasis to Promote Squamous Cell Carcinoma Progression

Aiping Luo et al.Feb 1, 2020
Abstract Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complexes have a mutation rate of approximately 20% in human cancer, and ARID1A is the most frequently mutated component. However, some components of SWI/SNF complexes, including ARID1A, exhibit a very low mutation rate in squamous cell carcinoma (SCC), and their role in SCC remains unknown. Here, we demonstrate that the low expression of ARID1A in SCC is the result of promoter hypermethylation. Low levels of ARID1A were associated with a poor prognosis. ARID1A maintained transcriptional homeostasis through both direct and indirect chromatin-remodeling mechanisms. Depletion of ARID1A activated an oncogenic transcriptome that drove SCC progression. The anti-inflammatory natural product parthenolide was synthetically lethal to ARID1A-depleted SCC cells due to its inhibition of both HDAC1 and oncogenic signaling. These findings support the clinical application of parthenolide to treat patients with SCC with low ARID1A expression. Significance: This study reveals novel inactivation mechanisms and tumor-suppressive roles of ARID1A in SCC and proposes parthenolide as an effective treatment for patients with SCC with low ARID1A expression.
1
Citation24
0
Save
1

HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity

Yabing Nan et al.Oct 17, 2022
Inducing cancer cell apoptosis through cytotoxic reagents is the main therapeutic strategy for diverse cancer types. However, several antiapoptotic factors impede curative cancer therapy by driving cancer cells to resist cytotoxic agent-induced apoptosis, thus leading to refractoriness and relapse. To define critical antiapoptotic factors that contribute to chemoresistance in esophageal squamous cell carcinoma (ESCC), we generated two pairs of parental and apoptosis-resistant cell models through cisplatin (DDP) induction and then performed whole-transcriptome sequencing. We identified the long noncoding RNA (lncRNA) histocompatibility leukocyte antigen complex P5 (HCP5) as the chief culprit for chemoresistance. Mechanistically, HCP5 interacts with UTP3 small subunit processome component (UTP3) and prevents UTP3 degradation from E3 ligase tripartite motif containing 29 (TRIM29)-mediated ubiquitination. UTP3 then recruits c-Myc to activate vesicle-associated membrane protein 3 (VAMP3) expression. Activated VAMP3 suppresses caspase-dependent apoptosis and eventually leads to chemoresistance. Accordingly, the expression level of the HCP5/UTP3/c-Myc/VAMP3 axis in chemoresistant patients is significantly higher than that in chemosensitive patients. Thus, our study demonstrated that the HCP5/UTP3/c-Myc/VAMP3 axis plays an important role in the inhibition of cancer cell apoptosis and that HCP5 may be a promising chemosensitivity target for cancer treatment. Inducing cancer cell apoptosis through cytotoxic reagents is the main therapeutic strategy for diverse cancer types. However, several antiapoptotic factors impede curative cancer therapy by driving cancer cells to resist cytotoxic agent-induced apoptosis, thus leading to refractoriness and relapse. To define critical antiapoptotic factors that contribute to chemoresistance in esophageal squamous cell carcinoma (ESCC), we generated two pairs of parental and apoptosis-resistant cell models through cisplatin (DDP) induction and then performed whole-transcriptome sequencing. We identified the long noncoding RNA (lncRNA) histocompatibility leukocyte antigen complex P5 (HCP5) as the chief culprit for chemoresistance. Mechanistically, HCP5 interacts with UTP3 small subunit processome component (UTP3) and prevents UTP3 degradation from E3 ligase tripartite motif containing 29 (TRIM29)-mediated ubiquitination. UTP3 then recruits c-Myc to activate vesicle-associated membrane protein 3 (VAMP3) expression. Activated VAMP3 suppresses caspase-dependent apoptosis and eventually leads to chemoresistance. Accordingly, the expression level of the HCP5/UTP3/c-Myc/VAMP3 axis in chemoresistant patients is significantly higher than that in chemosensitive patients. Thus, our study demonstrated that the HCP5/UTP3/c-Myc/VAMP3 axis plays an important role in the inhibition of cancer cell apoptosis and that HCP5 may be a promising chemosensitivity target for cancer treatment.
1
Citation20
0
Save
Load More