SK
Sashank Kasiraju
Author with expertise in Electrocatalysis for Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
423
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Insights into Nitrate Reduction over Indium-Decorated Palladium Nanoparticle Catalysts

Sujin Guo et al.Nov 21, 2017
Nitrate (NO3−) is an ubiquitous groundwater contaminant and is detrimental to human health. Bimetallic palladium-based catalysts have been found to be promising for treating nitrate (and nitrite, NO2−) contaminated waters. Those containing indium (In) are unusually active, but the mechanistic explanation for catalyst performance remains largely unproven. We report that In deposited on Pd nanoparticles (NPs) ("In-on-Pd NPs") shows room-temperature nitrate catalytic reduction activity that varies with volcano-shape dependence on In surface coverage. The most active catalyst had an In surface coverage of 40%, with a pseudo-first order normalized rate constant of kcat ∼ 7.6 L gsurface-metal−1 min−1, whereas monometallic Pd NPs and In2O3 have nondetectible activity for nitrate reduction. X-ray absorption spectroscopy (XAS) results indicated that In is in oxidized form in the as-synthesized catalyst; it reduces to zerovalent metal in the presence of H2 and reoxidizes following NO3− contact. Selectivity in excess of 95% to nontoxic N2 was observed for all the catalysts. Density functional theory (DFT) simulations suggest that submonolayer coverage amounts of metallic In provide strong binding sites for nitrate adsorption and they lower the activation barrier for the nitrate-to-nitrite reduction step. This improved understanding of the In active site expands the prospects of improved denitrification using metal-on-metal catalysts.
0

Vertically Aligned MoS2/Mo2C hybrid Nanosheets Grown on Carbon Paper for Efficient Electrocatalytic Hydrogen Evolution

Zhenhuan Zhao et al.Sep 18, 2017
Maximizing and creating active sites has been a general strategy to increase the performance of a catalyst. Because of the high electrocatalytic hydrogen evolution reactivity (HER) of ultrafine Mo2C nanocrystals and edges of two-dimensional MoS2, an electrode with a synergistic integration of these two nanomaterials is expected to show a better HER performance. Here we report this hybrid nanostructure of vertically aligned MoS2/Mo2C nanosheets on conductive carbon paper. It was revealed that the original structure of MoS2 nanosheets remains intact after the carburization, but the surfaces are incorporated with either Mo2C nanodomains or a heteroatomic mixture of S and C. The hybrid catalyst exhibits a much lower HER overpotential in comparison to those of the corresponding Mo2C and MoS2 alone. Its high activity is congruent with DFT calculations, which show that multiple S and C coordinated Mo sites with near zero Gibbs free energy of hydrogen adsorption exist. Thus, the low overpotential of this binder-free hybrid catalyst is a result of active sites of Mo–S–C and highly dispersed Mo2C nanodomains on the original edges and basal planes of MoS2. Our prediction and realization of active HER sites with this hybrid two-dimensional nanostructure opens up a route toward the development of more active HER catalysts.