Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
MY
Minmin Yang
Author with expertise in Gas Sensing Technology and Materials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
384
h-index:
20
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic Analyses Reveal Potential Independent Adaptation to High Altitude in Tibetan Chickens

Mingshan Wang et al.Mar 18, 2015
Much like other indigenous domesticated animals, Tibetan chickens living at high altitudes (2,200–4,100 m) show specific physiological adaptations to the extreme environmental conditions of the Tibetan Plateau, but the genetic bases of these adaptations are not well characterized. Here, we assembled a de novo genome of a Tibetan chicken and resequenced whole genomes of 32 additional chickens, including Tibetan chickens, village chickens, game fowl, and Red Junglefowl, and found that the Tibetan chickens could broadly be placed into two groups. Further analyses revealed that several candidate genes in the calcium-signaling pathway are possibly involved in adaptation to the hypoxia experienced by these chickens, as these genes appear to have experienced directional selection in the two Tibetan chicken populations, suggesting a potential genetic mechanism underlying high altitude adaptation in Tibetan chickens. The candidate selected genes identified in this study, and their variants, may be useful targets for clarifying our understanding of the domestication of chickens in Tibet, and might be useful in current breeding efforts to develop improved breeds for the highlands.
0
Citation185
0
Save
0

Preparation and Gas-Sensitive Properties of SnO2@Bi2O3 Core-Shell Heterojunction Structure

Jin Liu et al.Jan 16, 2025
The SnO2@Bi2O3 core-shell heterojunction structure was designed and synthesized via a hydrothermal method, and the structure and morphology of the synthesized samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Based on the conclusions from XRD and SEM, it can be observed that as the hydrothermal temperature increases, the content of Bi2O3 coated on the surface of SnO2 spheres gradually increases, and the diameter of Bi2O3 nanoparticles also increases. At a hydrothermal temperature of 160 Â°C, the SnO2 spheres are fully coated with Bi2O3 nanoparticles. This paper investigated the gas-sensitive performance of the SnO2@Bi2O3 sensor towards ethanol gas. Gas sensitivity tests at the optimal operating temperature of 300 Â°C showed that the composite prepared at 160 Â°C achieved a response value of 19.7 for 100 ppm ethanol. Additionally, the composite exhibited excellent response to 100 ppm ethanol, with a response time of only 4 s, as well as good repeatability. The excellent gas-sensitive performance of the SnO2@Bi2O3 core-shell heterojunction towards ethanol gas is attributed to its p-n heterojunction material properties. Its successful preparation contributes to the realization of high-performance heterostructure ethanol gas sensors.
0

Preparation and Gas-Sensitive Properties of Square–Star-Shaped Leaf-Like BiVO4 Nanomaterials

Jin Liu et al.Jan 16, 2025
In this study, square–star-shaped leaf-like BiVO4 nanomaterials were successfully synthesized using a conventional hydrothermal method. The microstructure, elemental composition, and gas-sensing performance of the materials were thoroughly investigated. Morphological analysis revealed that BiVO4 prepared at different reaction temperatures exhibited square–star-shaped leaf-like structures, with the most regular and dense structures formed at 150 Â°C, exhibiting a large specific surface area of 2.84 m2/g. The response performance of the BiVO4 gas sensors to different target gases was evaluated, and the results showed that the prepared BiVO4 gas sensor exhibited a strong response to NH3. At the optimal operating temperature of 300 Â°C, its sensitivity to 5 ppm NH3 reached 13.3, with a response time of 28 s and a recovery time of 16 s. Moreover, the gas sensor exhibited excellent repeatability and anti-interference performance. These findings indicate that square–star-shaped leaf-like BiVO4 holds great potential in environmental monitoring and industrial safety detection, offering new insights for the development of high-performance gas sensors.