Cynthia RudinVerified
Verified Account
Verified
computer science, biostatistics and bioinformatics
Member for 4 days
I am engaged in scientific research in the fields of computer science, electrical and computer engineering, statistical science, mathematics, biostatistics and bioinformatics. The research focuses on machine learning tools that help humans make better decisions, mainly interpretable machine learning...
Show more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
1
Publications:
149
(77% Open Access)
Cited by:
14,642
h-index:
53
/
i10-index:
146
Reputation
Artificial Intelligence
77%
Safety, Risk, Reliability And Quality
76%
Computational Theory And Mathematics
76%
Show more
How is this calculated?
Publications
0

All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously

Aaron Fisher et al.Jan 1, 2018
Variable importance (VI) tools describe how much covariates contribute to a prediction model's accuracy. However, important variables for one well-performing model (for example, a linear model $f(\mathbf{x})=\mathbf{x}^{T}β$ with a fixed coefficient vector $β$) may be unimportant for another model. In this paper, we propose model class reliance (MCR) as the range of VI values across all well-performing model in a prespecified class. Thus, MCR gives a more comprehensive description of importance by accounting for the fact that many prediction models, possibly of different parametric forms, may fit the data well. In the process of deriving MCR, we show several informative results for permutation-based VI estimates, based on the VI measures used in Random Forests. Specifically, we derive connections between permutation importance estimates for a single prediction model, U-statistics, conditional variable importance, conditional causal effects, and linear model coefficients. We then give probabilistic bounds for MCR, using a novel, generalizable technique. We apply MCR to a public data set of Broward County criminal records to study the reliance of recidivism prediction models on sex and race. In this application, MCR can be used to help inform VI for unknown, proprietary models.
0

Interpretable machine learning: Fundamental principles and 10 grand challenges

Cynthia Rudin et al.Jan 1, 2022
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the “Rashomon set” of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
0

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

Sachit Menon et al.Jun 1, 2020
The primary aim of single-image super-resolution is to construct a high-resolution (HR) image from a corresponding low-resolution (LR) input. In previous approaches, which have generally been supervised, the training objective typically measures a pixel-wise average distance between the super-resolved (SR) and HR images. Optimizing such metrics often leads to blurring, especially in high variance (detailed) regions. We propose an alternative formulation of the super-resolution problem based on creating realistic SR images that downscale correctly. We present a novel super-resolution algorithm addressing this problem, PULSE (Photo Upsampling via Latent Space Exploration), which generates high-resolution, realistic images at resolutions previously unseen in the literature. It accomplishes this in an entirely self-supervised fashion and is not confined to a specific degradation operator used during training, unlike previous methods (which require training on databases of LR-HR image pairs for supervised learning). Instead of starting with the LR image and slowly adding detail, PULSE traverses the high-resolution natural image manifold, searching for images that downscale to the original LR image. This is formalized through the "downscaling loss," which guides exploration through the latent space of a generative model. By leveraging properties of high-dimensional Gaussians, we restrict the search space to guarantee that our outputs are realistic. PULSE thereby generates super-resolved images that both are realistic and downscale correctly. We show extensive experimental results demonstrating the efficacy of our approach in the domain of face super-resolution (also known as face hallucination). Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
0

This Looks Like That: Deep Learning for Interpretable Image Recognition

Chaofan Chen et al.Jan 1, 2018
When we are faced with challenging image classification tasks, we often explain our reasoning by dissecting the image, and pointing out prototypical aspects of one class or another. The mounting evidence for each of the classes helps us make our final decision. In this work, we introduce a deep network architecture -- prototypical part network (ProtoPNet), that reasons in a similar way: the network dissects the image by finding prototypical parts, and combines evidence from the prototypes to make a final classification. The model thus reasons in a way that is qualitatively similar to the way ornithologists, physicians, and others would explain to people on how to solve challenging image classification tasks. The network uses only image-level labels for training without any annotations for parts of images. We demonstrate our method on the CUB-200-2011 dataset and the Stanford Cars dataset. Our experiments show that ProtoPNet can achieve comparable accuracy with its analogous non-interpretable counterpart, and when several ProtoPNets are combined into a larger network, it can achieve an accuracy that is on par with some of the best-performing deep models. Moreover, ProtoPNet provides a level of interpretability that is absent in other interpretable deep models.
0

Deep Learning for Case-Based Reasoning Through Prototypes: A Neural Network That Explains Its Predictions

Oscar Li et al.Apr 29, 2018
Deep neural networks are widely used for classification. These deep models often suffer from a lack of interpretability---they are particularly difficult to understand because of their non-linear nature. As a result, neural networks are often treated as "black box" models, and in the past, have been trained purely to optimize the accuracy of predictions. In this work, we create a novel network architecture for deep learning that naturally explains its own reasoning for each prediction. This architecture contains an autoencoder and a special prototype layer, where each unit of that layer stores a weight vector that resembles an encoded training input. The encoder of the autoencoder allows us to do comparisons within the latent space, while the decoder allows us to visualize the learned prototypes. The training objective has four terms: an accuracy term, a term that encourages every prototype to be similar to at least one encoded input, a term that encourages every encoded input to be close to at least one prototype, and a term that encourages faithful reconstruction by the autoencoder. The distances computed in the prototype layer are used as part of the classification process. Since the prototypes are learned during training, the learned network naturally comes with explanations for each prediction, and the explanations are loyal to what the network actually computes.
Load More