Matteo MassaroVerified
Verified Account
Verified
Ph.D in Material Sciences & Nanomedicine with a MS in Medical Biotechnology & Nanotechnology, achieved with highest honors. My research investigates the preclinical application of Lipid Nanoparticles for delivery of RNA therapeutics in different diseases stemming from mitochondrial dysfunctions.
Member for 11 months and 28 days
Achievements
Open Access Advocate
Active user
Cited Author
Peer Reviewer
Open Science Supporter
Key Stats
Upvotes received:
1067
Publications:
4
(100% Open Access)
Cited by:
54
h-index:
3
/
i10-index:
2
Amount funded:
100
Reputation
Pulmonary And Respiratory Medicine
37%
Oncology
29%
Immunology
6%
Show more
How is this calculated?
Publications
2

Lipid nanoparticle-mediated mRNA delivery in lung fibrosis

Matteo Massaro et al.Jan 13, 2023
mRNA delivery enables the specific synthesis of proteins with therapeutic potential, representing a powerful strategy in diseases lacking efficacious pharmacotherapies. Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by excessive extracellular matrix (ECM) deposition and subsequent alveolar remodeling. Alveolar epithelial type 2 cells (AEC2) and fibroblasts represent important targets in IPF given their role in initiating and driving aberrant wound healing responses that lead to excessive ECM deposition. Our objective was to examine a lipid nanoparticle (LNP)-based mRNA construct as a viable strategy to target alveolar epithelial cells and fibroblasts in IPF. mRNA-containing LNPs measuring ∼34 nm had high encapsulation efficiency, protected mRNA from degradation, and exhibited sustained release kinetics. eGFP mRNA LNP transfection in human primary cells proved dose- and time-dependent in vitro. In a bleomycin mouse model of lung fibrosis, luciferase mRNA LNPs administered intratracheally led to site-specific lung accumulation. Importantly, bioluminescence signal was detected in lungs as early as 2 h after delivery, with signal still evident at 48 h. Of note, LNPs were found associated with AEC2 and fibroblasts in vivo. Findings highlight the potential for pulmonary delivery of mRNA in IPF, opening therapeutic avenues aimed at halting and potentially reversing disease progression.
2
Citation23
0
Save
3

Polymer‐Functionalized Mitochondrial Transplantation to Plaque Macrophages as a Therapeutic Strategy Targeting Atherosclerosis

Haoran Liu et al.Mar 10, 2022
Abstract The pro‐inflammatory microenvironment that contributes to atherosclerotic plaque progression is sustained by M1 macrophages. Metabolic reprogramming toward heightened glycolysis accompanies M1 macrophage polarization, with approaches aimed at lessening glycolytic metabolism in macrophages standing to impact disease progression. The objective is to decrease the inflammatory response in atherosclerotic lesions by inducing favorable metabolic phenotypes in macrophages using an innovative mitochondrial transplantation strategy. The hypothesis is that delivery of mitochondria, functionalized with a dextran and triphenylphosphonium (Dextran‐TPP) polymer conjugate for enhanced cellular transplantation, to atherosclerotic plaques properly regulates M1 macrophage bioenergetics, attenuating inflammatory processes and preventing plaque progression. Dextran‐TPP mitochondria transplantation to M1 macrophages has profound effects on cell bioenergetics, resulting in increased oxygen consumption rate and reduced glycolytic flux that coincides with a decreased inflammatory response. Upon intravenous delivery to ApoE −/− mice fed a high fat diet, Dextran‐TPP mitochondria accumulate in aortic plaques and co‐localize with macrophages. Importantly, Dextran‐TPP mitochondria treatment reduces the plaque burden in ApoE −/− mice, improving cholesterol levels, and ameliorating hepatic steatosis and inflammation. Findings highlight Dextran‐TPP mitochondria as a novel biological particle for the treatment of atherosclerosis, underlining the potential for macrophage metabolic regulation as a therapy in other diseases.
3
Citation5
0
Save
2

Tyrosine kinase inhibitor-loaded biomimetic nanoparticles as a treatment for osteosarcoma

Federica Giordano et al.Dec 1, 2022
Abstract Small-molecule tyrosine kinase inhibitors (TKIs) represent a potentially powerful approach to the treatment of osteosarcoma (OS). However, dose-limiting toxicity, therapeutic efficacy, and targeting specificity are significant barriers to the use of TKIs in the clinic. Notably among TKIs, ponatinib demonstrated potent anti-tumor activity; however, it received an FDA black box warning for potential side effects. We propose ponatinib-loaded biomimetic nanoparticles (NPs) to repurpose ponatinib as an efficient therapeutic option for OS. In this study, we demonstrate enhanced targeting ability and maintain potent ponatinib nano-therapeutic activity, while also reducing toxicity. In in vitro two- and three-dimensional models, we demonstrate that ponatinib-loaded biomimetic NPs maintain the efficacy of the free drug, while in vivo we show that they can improve tumor targeting, slow tumor growth, and reduce evidence of systemic toxicities. Though there is limited Pon encapsulation within NPs, this platform may improve current therapeutic approaches and reduce dosage-related side effects to achieve better clinical outcomes in OS patients. Graphical Abstract
2
Citation2
0
Save