VR
Valentín Ruano-Rubio
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(58% Open Access)
Cited by:
19,185
h-index:
22
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek et al.Aug 1, 2016
Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes. Exome sequencing data from 60,706 people of diverse geographic ancestry is presented, providing insight into genetic variation across populations, and illuminating the relationship between DNA variants and human disease. As part of the Exome Aggregation Consortium (ExAC) project, Daniel MacArthur and colleagues report on the generation and analysis of high-quality exome sequencing data from 60,706 individuals of diverse ancestry. This provides the most comprehensive catalogue of human protein-coding genetic variation to date, yielding unprecedented resolution for the analysis of very rare variants across multiple human populations. The catalogue is freely accessible and provides a critical reference panel for the clinical interpretation of genetic variants and the discovery of disease-related genes.
0
Citation9,627
0
Save
0

The mutational constraint spectrum quantified from variation in 141,456 humans

Konrad Karczewski et al.May 27, 2020
Abstract Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes 1 . Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.
0
Citation7,592
0
Save
0

A structural variation reference for medical and population genetics

Ryan Collins et al.May 27, 2020
Structural variants (SVs) rearrange large segments of DNA1 and can have profound consequences in evolution and human disease2,3. As national biobanks, disease-association studies, and clinical genetic testing have grown increasingly reliant on genome sequencing, population references such as the Genome Aggregation Database (gnomAD)4 have become integral in the interpretation of single-nucleotide variants (SNVs)5. However, there are no reference maps of SVs from high-coverage genome sequencing comparable to those for SNVs. Here we present a reference of sequence-resolved SVs constructed from 14,891 genomes across diverse global populations (54% non-European) in gnomAD. We discovered a rich and complex landscape of 433,371 SVs, from which we estimate that SVs are responsible for 25-29% of all rare protein-truncating events per genome. We found strong correlations between natural selection against damaging SNVs and rare SVs that disrupt or duplicate protein-coding sequence, which suggests that genes that are highly intolerant to loss-of-function are also sensitive to increased dosage6. We also uncovered modest selection against noncoding SVs in cis-regulatory elements, although selection against protein-truncating SVs was stronger than all noncoding effects. Finally, we identified very large (over one megabase), rare SVs in 3.9% of samples, and estimate that 0.13% of individuals may carry an SV that meets the existing criteria for clinically important incidental findings7. This SV resource is freely distributed via the gnomAD browser8 and will have broad utility in population genetics, disease-association studies, and diagnostic screening.
0
Citation722
0
Save
0

Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

Magnus Manske et al.Jun 12, 2012
Next-generation sequencing is used here to analyse Plasmodium falciparum genome variation directly from clinical blood samples, as well as cultured isolates, from Africa, Asia and Oceania. Resistance to the major antimalarial drug artemisinin is emerging in the Plasmodium falciparum parasite across Southeast Asia, and there is concern that the increased deployment of antimalarials in pursuit of disease eradication might simply lead to increased drug resistance. To monitor these risks it is important to survey the parasite population for genetic changes. Next-generation sequencing is used here to analyse P. falciparum genome variation directly from nearly 300 clinical blood samples, and from cultured isolates from Africa, Asia and Oceania. The authors use these data to analyse the diversity of the parasite population across different geographical locations, as well as within-host diversity at the level of the whole genome, and they show how this may be used to estimate inbreeding rates, which are important for the evolution of drug resistance. Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance1,2. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.
0
Citation481
0
Save
0

Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia

Olivo Miotto et al.Apr 28, 2013
Dominic Kwiatkowski and colleagues report analysis of genetic variation in 826 Plasmodium falciparum samples collected from 10 locations in West Africa and southeast Asia. They characterize the population structure of this parasite in Cambodia and find evidence for multiple distinct subpopulations showing high levels of genetic differentiation and artemisinin resistance. We describe an analysis of genome variation in 825 P. falciparum samples from Asia and Africa that identifies an unusual pattern of parasite population structure at the epicenter of artemisinin resistance in western Cambodia. Within this relatively small geographic area, we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalog of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in transporter proteins and DNA mismatch repair proteins. These data provide a population-level genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist in its elimination.
0
Citation448
0
Save
0

Characterising the loss-of-function impact of 5’ untranslated region variants in whole genome sequence data from 15,708 individuals

Leif Groop et al.Feb 7, 2019
Abstract Upstream open reading frames (uORFs) are important tissue-specific cis -regulators of protein translation. Although isolated case reports have shown that variants that create or disrupt uORFs can cause disease, genetic sequencing approaches typically focus on protein-coding regions and ignore these variants. Here, we describe a systematic genome-wide study of variants that create and disrupt human uORFs, and explore their role in human disease using 15,708 whole genome sequences collected by the Genome Aggregation Database (gnomAD) project. We show that 14,897 variants that create new start codons upstream of the canonical coding sequence (CDS), and 2,406 variants disrupting the stop site of existing uORFs, are under strong negative selection. Furthermore, variants creating uORFs that overlap the CDS show signals of selection equivalent to coding loss-of-function variants, and uORF-perturbing variants are under strong selection when arising upstream of known disease genes and genes intolerant to loss-of-function variants. Finally, we identify specific genes where perturbation of uORFs is likely to represent an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in families with neurofibromatosis. Our results highlight uORF-perturbing variants as an important and under-recognised functional class that can contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data to study the deleteriousness of specific classes of non-coding variants.
0
Citation8
0
Save
0

The mutational constraint spectrum quantified from variation in 141,456 humans

Konrad Karczewski et al.Jan 28, 2019
Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes critical for an organism’s function will be depleted for such variants in natural populations, while non-essential genes will tolerate their accumulation. However, predicted loss-of-function (pLoF) variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes[1][1]. Here, we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence pLoF variants in this cohort after filtering for sequencing and annotation artifacts. Using an improved human mutation rate model, we classify human protein-coding genes along a spectrum representing tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve gene discovery power for both common and rare diseases.### Competing Interest Statement [1]: #ref-1
Load More