SARS coronavirus 2 (SARS-CoV-2) isolates encoding a D614G mutation in the viral spike (S) protein predominate over time in locales where it is found, implying that this change enhances viral transmission. We therefore compared the functional properties of the S proteins with aspartic acid (S ) and glycine (S ) at residue 614. We observed that retroviruses pseudotyped with S infected ACE2-expressing cells markedly more efficiently than those with S . This greater infectivity was correlated with less S1 shedding and greater incorporation of the S protein into the pseudovirion. Similar results were obtained using the virus-like particles produced with SARS-CoV-2 M, N, E, and S proteins. However, S did not bind ACE2 more efficiently than S , and the pseudoviruses containing these S proteins were neutralized with comparable efficiencies by convalescent plasma. These results show S is more stable than S , consistent with epidemiological data suggesting that viruses with S transmit more efficiently.