JZ
Jie Zheng
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
38
(68% Open Access)
Cited by:
9,010
h-index:
45
/
i10-index:
97
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis

Jie Zheng et al.Sep 22, 2016
Abstract Motivation LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. Results In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies. Availability and Implementation The web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/ Supplementary information Supplementary data are available at Bioinformatics online.
1
Citation899
0
Save
0

Systematic identification of genetic influences on methylation across the human life course

Tom Gaunt et al.Mar 31, 2016
The influence of genetic variation on complex diseases is potentially mediated through a range of highly dynamic epigenetic processes exhibiting temporal variation during development and later life. Here we present a catalogue of the genetic influences on DNA methylation (methylation quantitative trait loci (mQTL)) at five different life stages in human blood: children at birth, childhood, adolescence and their mothers during pregnancy and middle age. We show that genetic effects on methylation are highly stable across the life course and that developmental change in the genetic contribution to variation in methylation occurs primarily through increases in environmental or stochastic effects. Though we map a large proportion of the cis-acting genetic variation, a much larger component of genetic effects influencing methylation are acting in trans. However, only 7 % of discovered mQTL are trans-effects, suggesting that the trans component is highly polygenic. Finally, we estimate the contribution of mQTL to variation in complex traits and infer that methylation may have a causal role consistent with an infinitesimal model in which many methylation sites each have a small influence, amounting to a large overall contribution. DNA methylation contains a significant heritable component that remains consistent across the lifespan. Our results suggest that the genetic component of methylation may have a causal role in complex traits. The database of mQTL presented here provide a rich resource for those interested in investigating the role of methylation in disease.
0
Citation520
0
Save
1

Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases

Jie Zheng et al.Sep 7, 2020
The human proteome is a major source of therapeutic targets. Recent genetic association analyses of the plasma proteome enable systematic evaluation of the causal consequences of variation in plasma protein levels. Here we estimated the effects of 1,002 proteins on 225 phenotypes using two-sample Mendelian randomization (MR) and colocalization. Of 413 associations supported by evidence from MR, 130 (31.5%) were not supported by results of colocalization analyses, suggesting that genetic confounding due to linkage disequilibrium is widespread in naïve phenome-wide association studies of proteins. Combining MR and colocalization evidence in cis-only analyses, we identified 111 putatively causal effects between 65 proteins and 52 disease-related phenotypes ( https://www.epigraphdb.org/pqtl/ ). Evaluation of data from historic drug development programs showed that target-indication pairs with MR and colocalization support were more likely to be approved, evidencing the value of this approach in identifying and prioritizing potential therapeutic targets. Mendelian randomization (MR) and colocalization analyses are used to estimate causal effects of 1,002 plasma proteins on 225 phenotypes. Evidence from drug developmental programs shows that target-indication pairs with MR and colocalization support were more likely to be approved, highlighting the value of this approach for prioritizing therapeutic targets.
1
Citation448
0
Save
0

Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases

Philip Haycock et al.Feb 27, 2017

Importance

 The causal direction and magnitude of the association between telomere length and incidence of cancer and non-neoplastic diseases is uncertain owing to the susceptibility of observational studies to confounding and reverse causation. 

Objective

 To conduct a Mendelian randomization study, using germline genetic variants as instrumental variables, to appraise the causal relevance of telomere length for risk of cancer and non-neoplastic diseases. 

Data Sources

 Genomewide association studies (GWAS) published up to January 15, 2015. 

Study Selection

 GWAS of noncommunicable diseases that assayed germline genetic variation and did not select cohort or control participants on the basis of preexisting diseases. Of 163 GWAS of noncommunicable diseases identified, summary data from 103 were available. 

Data Extraction and Synthesis

 Summary association statistics for single nucleotide polymorphisms (SNPs) that are strongly associated with telomere length in the general population. 

Main Outcomes and Measures

 Odds ratios (ORs) and 95% confidence intervals (CIs) for disease per standard deviation (SD) higher telomere length due to germline genetic variation. 

Results

 Summary data were available for 35 cancers and 48 non-neoplastic diseases, corresponding to 420 081 cases (median cases, 2526 per disease) and 1 093 105 controls (median, 6789 per disease). Increased telomere length due to germline genetic variation was generally associated with increased risk for site-specific cancers. The strongest associations (ORs [95% CIs] per 1-SD change in genetically increased telomere length) were observed for glioma, 5.27 (3.15-8.81); serous low-malignant-potential ovarian cancer, 4.35 (2.39-7.94); lung adenocarcinoma, 3.19 (2.40-4.22); neuroblastoma, 2.98 (1.92-4.62); bladder cancer, 2.19 (1.32-3.66); melanoma, 1.87 (1.55-2.26); testicular cancer, 1.76 (1.02-3.04); kidney cancer, 1.55 (1.08-2.23); and endometrial cancer, 1.31 (1.07-1.61). Associations were stronger for rarer cancers and at tissue sites with lower rates of stem cell division. There was generally little evidence of association between genetically increased telomere length and risk of psychiatric, autoimmune, inflammatory, diabetic, and other non-neoplastic diseases, except for coronary heart disease (OR, 0.78 [95% CI, 0.67-0.90]), abdominal aortic aneurysm (OR, 0.63 [95% CI, 0.49-0.81]), celiac disease (OR, 0.42 [95% CI, 0.28-0.61]) and interstitial lung disease (OR, 0.09 [95% CI, 0.05-0.15]). 

Conclusions and Relevance

 It is likely that longer telomeres increase risk for several cancers but reduce risk for some non-neoplastic diseases, including cardiovascular diseases.
0
Citation433
0
Save
0

Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC6 in osteoporosis

John Kemp et al.Sep 4, 2017
David Evans, Brent Richards and colleagues carried out a genome-wide association study in 142,487 individuals from the UK Biobank and identified 153 new loci associated with heel bone mineral density. They also conducted in vivo studies that implicated GPC6 and several other genes in osteoporosis. Osteoporosis is a common disease diagnosed primarily by measurement of bone mineral density (BMD). We undertook a genome-wide association study (GWAS) in 142,487 individuals from the UK Biobank to identify loci associated with BMD as estimated by quantitative ultrasound of the heel. We identified 307 conditionally independent single-nucleotide polymorphisms (SNPs) that attained genome-wide significance at 203 loci, explaining approximately 12% of the phenotypic variance. These included 153 previously unreported loci, and several rare variants with large effect sizes. To investigate the underlying mechanisms, we undertook (1) bioinformatic, functional genomic annotation and human osteoblast expression studies; (2) gene-function prediction; (3) skeletal phenotyping of 120 knockout mice with deletions of genes adjacent to lead independent SNPs; and (4) analysis of gene expression in mouse osteoblasts, osteocytes and osteoclasts. The results implicate GPC6 as a novel determinant of BMD, and also identify abnormal skeletal phenotypes in knockout mice associated with a further 100 prioritized genes.
0
Citation424
0
Save
0

Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data

Ioanna Tachmazidou et al.Jan 21, 2019
Osteoarthritis is the most common musculoskeletal disease and the leading cause of disability globally. Here, we performed a genome-wide association study for osteoarthritis (77,052 cases and 378,169 controls), analyzing four phenotypes: knee osteoarthritis, hip osteoarthritis, knee and/or hip osteoarthritis, and any osteoarthritis. We discovered 64 signals, 52 of them novel, more than doubling the number of established disease loci. Six signals fine-mapped to a single variant. We identified putative effector genes by integrating expression quantitative trait loci (eQTL) colocalization, fine-mapping, and human rare-disease, animal-model, and osteoarthritis tissue expression data. We found enrichment for genes underlying monogenic forms of bone development diseases, and for the collagen formation and extracellular matrix organization biological pathways. Ten of the likely effector genes, including TGFB1 (transforming growth factor beta 1), FGF18 (fibroblast growth factor 18), CTSK (cathepsin K), and IL11 (interleukin 11), have therapeutics approved or in clinical trials, with mechanisms of action supportive of evaluation for efficacy in osteoarthritis.
0
Citation407
0
Save
0

Education, intelligence and Alzheimer’s disease: Evidence from a multivariable two-sample Mendelian randomization study

E. Anderson et al.Aug 27, 2018
Abstract Objectives To examine whether educational attainment and intelligence have causal effects on risk of Alzheimer’s disease (AD), independently of each other. Design Two-sample univariable and multivariable Mendelian Randomization (MR) to estimate the causal effects of education on intelligence and vice versa, and the total and independent causal effects of both education and intelligence on risk of AD. Participants 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer’s Project (IGAP) consortium Main outcome measure Odds ratio of AD per standardised deviation increase in years of schooling and intelligence Results There was strong evidence of a causal, bidirectional relationship between intelligence and educational attainment, with the magnitude of effect being similar in both directions. Similar overall effects were observed for both educational attainment and intelligence on AD risk in the univariable MR analysis; with each SD increase in years of schooling and intelligence, odds of AD were, on average, 37% (95% CI: 23% to 49%) and 35% (95% CI: 25% to 43%) lower, respectively. There was little evidence from the multivariable MR analysis that educational attainment affected AD risk once intelligence was taken into account, but intelligence affected AD risk independently of educational attainment to a similar magnitude observed in the univariate analysis. Conclusions There is robust evidence for an independent, causal effect of intelligence in lowering AD risk, potentially supporting a role for cognitive training interventions to improve aspects of intelligence. However, given the observed causal effect of educational attainment on intelligence, there may also be support for policies aimed at increasing length of schooling to lower incidence of AD.
0
Citation20
0
Save
Load More