JD
Jenny Dongen
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(63% Open Access)
Cited by:
2,847
h-index:
44
/
i10-index:
88
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression

Urmo Võsa et al.Sep 1, 2021
Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes. Analyses of expression profiles from whole blood of 31,684 individuals identify cis-expression quantitative trait loci (eQTL) effects for 88% of genes and trans-eQTL effects for 37% of trait-associated variants.
0
Citation851
0
Save
1

Disease variants alter transcription factor levels and methylation of their binding sites

Marc Bonder et al.Dec 5, 2016
Peter 't Hoen, Lude Franke, Bastiaan Heijmans and colleagues present a combined analysis of methylome and transcriptome data from a large collection of whole-blood samples to infer the downstream effects of disease-associated variants. They identify a large number of trait-associated SNPs influencing methylation of CpG sites in trans, providing insights into the downstream functional effects of many disease-associated variants. Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences1,2. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained3,4. The analysis of DNA methylation, a key component of the epigenome5,6, offers highly complementary data on the regulatory potential of genomic regions7,8. Here we show that disease-associated variants have widespread effects on DNA methylation in trans that likely reflect differential occupancy of trans binding sites by cis-regulated transcription factors. Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907 established trait-associated SNPs that affect the methylation levels of 10,141 different CpG sites in trans (false discovery rate (FDR) < 0.05). These included SNPs that affect both the expression of a nearby transcription factor (such as NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across the genome. Trans methylation QTLs effectively expose the downstream effects of disease-associated variants.
1
Citation432
0
Save
0

Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

Eleonora Porcu et al.Jul 24, 2019
Abstract Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene–trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2 , known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits.
0
Citation254
0
Save
0

Genomics of 1 million parent lifespans implicates novel pathways and common diseases and distinguishes survival chances

Paul Timmers et al.Jan 15, 2019
We use a genome-wide association of 1 million parental lifespans of genotyped subjects and data on mortality risk factors to validate previously unreplicated findings near CDKN2B-AS1, ATXN2/BRAP, FURIN/FES, ZW10, PSORS1C3, and 13q21.31, and identify and replicate novel findings near ABO, ZC3HC1, and IGF2R. We also validate previous findings near 5q33.3/EBF1 and FOXO3, whilst finding contradictory evidence at other loci. Gene set and cell-specific analyses show that expression in foetal brain cells and adult dorsolateral prefrontal cortex is enriched for lifespan variation, as are gene pathways involving lipid proteins and homeostasis, vesicle-mediated transport, and synaptic function. Individual genetic variants that increase dementia, cardiovascular disease, and lung cancer - but not other cancers - explain the most variance. Resulting polygenic scores show a mean lifespan difference of around five years of life across the deciles.This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).Ageing happens to us all, and as the cabaret singer Maurice Chevalier pointed out, "old age is not that bad when you consider the alternative". Yet, the growing ageing population of most developed countries presents challenges to healthcare systems and government finances. For many older people, long periods of ill health are part of the end of life, and so a better understanding of ageing could offer the opportunity to prolong healthy living into old age. Ageing is complex and takes a long time to study – a lifetime in fact. This makes it difficult to discern its causes, among the countless possibilities based on an individual’s genes, behaviour or environment. While thousands of regions in an individual’s genetic makeup are known to influence their risk of different diseases, those that affect how long they will live have proved harder to disentangle. Timmers et al. sought to pinpoint such regions, and then use this information to predict, based on their DNA, whether someone had a better or worse chance of living longer than average. The DNA of over 500,000 people was read to reveal the specific ‘genetic fingerprints’ of each participant. Then, after asking each of the participants how long both of their parents had lived, Timmers et al. pinpointed 12 DNA regions that affect lifespan. Five of these regions were new and had not been linked to lifespan before. Across the twelve as a whole several were known to be involved in Alzheimer’s disease, smoking-related cancer or heart disease. Looking at the entire genome, Timmers et al. could then predict a lifespan score for each individual, and when they sorted participants into ten groups based on these scores they found that top group lived five years longer than the bottom, on average. Many factors beside genetics influence how long a person will live and our lifespan cannot be read from our DNA alone. Nevertheless, Timmers et al. had hoped to narrow down their search and discover specific genes that directly influence how quickly people age, beyond diseases. If such genes exist, their effects were too small to be detected in this study. The next step will be to expand the study to include more participants, which will hopefully pinpoint further genomic regions and help disentangle the biology of ageing and disease.
0
Citation230
0
Save
0

Validating biomarkers and models for epigenetic inference of alcohol consumption from blood

Silvana Maas et al.Oct 26, 2021
Abstract Background Information on long-term alcohol consumption is relevant for medical and public health research, disease therapy, and other areas. Recently, DNA methylation-based inference of alcohol consumption from blood was reported with high accuracy, but these results were based on employing the same dataset for model training and testing, which can lead to accuracy overestimation. Moreover, only subsets of alcohol consumption categories were used, which makes it impossible to extrapolate such models to the general population. By using data from eight population-based European cohorts ( N = 4677), we internally and externally validated the previously reported biomarkers and models for epigenetic inference of alcohol consumption from blood and developed new models comprising all data from all categories. Results By employing data from six European cohorts ( N = 2883), we empirically tested the reproducibility of the previously suggested biomarkers and prediction models via ten-fold internal cross-validation. In contrast to previous findings, all seven models based on 144-CpGs yielded lower mean AUCs compared to the models with less CpGs. For instance, the 144-CpG heavy versus non-drinkers model gave an AUC of 0.78 ± 0.06, while the 5 and 23 CpG models achieved 0.83 ± 0.05, respectively. The transportability of the models was empirically tested via external validation in three independent European cohorts ( N = 1794), revealing high AUC variance between datasets within models. For instance, the 144-CpG heavy versus non-drinkers model yielded AUCs ranging from 0.60 to 0.84 between datasets. The newly developed models that considered data from all categories showed low AUCs but gave low AUC variation in the external validation. For instance, the 144-CpG heavy and at-risk versus light and non-drinkers model achieved AUCs of 0.67 ± 0.02 in the internal cross-validation and 0.61–0.66 in the external validation datasets. Conclusions The outcomes of our internal and external validation demonstrate that the previously reported prediction models suffer from both overfitting and accuracy overestimation. Our results show that the previously proposed biomarkers are not yet sufficient for accurate and robust inference of alcohol consumption from blood. Overall, our findings imply that DNA methylation prediction biomarkers and models need to be improved considerably before epigenetic inference of alcohol consumption from blood can be considered for practical applications.
0
Citation10
0
Save
25

DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan

Jenny Dongen et al.Jul 22, 2020
Abstract DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N=15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha=1.2×10 −7 ; Bonferroni correction). In cord blood samples of 2,425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression ( r =0.74, p=0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripherl blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range=3-82%) of the aggression–methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.
25
Citation2
0
Save
Load More