SW
Sam Wilson
Author with expertise in Innate Immunity to Viral Infection
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(79% Open Access)
Cited by:
3,797
h-index:
32
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MX2 is an interferon-induced inhibitor of HIV-1 infection

Melissa Kane et al.Oct 1, 2013
MX2 is shown to be an interferon-induced inhibitor of HIV-1 infection, and this antiviral activity may involve the inhibition of nuclear import of subviral complexes. Two groups report in this issue of Nature that the human interferon-induced GTP-binding protein MX2 is a potent inhibitor of human immunodeficiency virus type 1 (HIV-1) and a number of other lentiviruses. For some years it had been known that the related protein MX1 can inhibit HIV-1 replication in humans, but MX2 was thought to be devoid of antiviral activity. The anti-HIV-1 action of MX2 is much less dependent on GTPase activity than is the broader antiviral activity of MX1, pointing to possible mechanistic differences between them. HIV-1 replication can be inhibited by type I interferon (IFN), and the expression of a number of gene products with anti-HIV-1 activity is induced by type I IFN1,2. However, none of the known antiretroviral proteins can account for the ability of type I IFN to inhibit early, preintegration phases of the HIV-1 replication cycle in human cells3,4. Here, by comparing gene expression profiles in cell lines that differ in their ability to support the inhibitory action of IFN-α at early steps of the HIV-1 replication cycle, we identify myxovirus resistance 2 (MX2) as an interferon-induced inhibitor of HIV-1 infection. Expression of MX2 reduces permissiveness to a variety of lentiviruses, whereas depletion of MX2 using RNA interference reduces the anti-HIV-1 potency of IFN-α. HIV-1 reverse transcription proceeds normally in MX2-expressing cells, but 2-long terminal repeat circular forms of HIV-1 DNA are less abundant, suggesting that MX2 inhibits HIV-1 nuclear import, or destabilizes nuclear HIV-1 DNA. Consistent with this notion, mutations in the HIV-1 capsid protein that are known, or suspected, to alter the nuclear import pathways used by HIV-1 confer resistance to MX2, whereas preventing cell division increases MX2 potency. Overall, these findings indicate that MX2 is an effector of the anti-HIV-1 activity of type-I IFN, and suggest that MX2 inhibits HIV-1 infection by inhibiting capsid-dependent nuclear import of subviral complexes.
0
Citation464
0
Save
0

Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses

Andrew Shaw et al.Dec 18, 2017
The host innate immune response mediated by type I interferon (IFN) and the resulting up-regulation of hundreds of interferon-stimulated genes (ISGs) provide an immediate barrier to virus infection. Studies of the type I ‘interferome’ have mainly been carried out at a single species level, often lacking the power necessary to understand key evolutionary features of this pathway. Here, using a single experimental platform, we determined the properties of the interferomes of multiple vertebrate species and developed a webserver to mine the dataset. This approach revealed a conserved ‘core’ of 62 ISGs, including genes not previously associated with IFN, underscoring the ancestral functions associated with this antiviral host response. We show that gene expansion contributes to the evolution of the IFN system and that interferomes are shaped by lineage-specific pressures. Consequently, each mammal possesses a unique repertoire of ISGs, including genes common to all mammals and others unique to their specific species or phylogenetic lineages. An analysis of genes commonly down-regulated by IFN suggests that epigenetic regulation of transcription is a fundamental aspect of the IFN response. Our study provides a resource for the scientific community highlighting key paradigms of the type I IFN response.
0
Citation306
0
Save
0

Identification of Interferon-Stimulated Genes with Antiretroviral Activity

Melissa Kane et al.Sep 1, 2016
Highlights•ISG screening identifies direct and indirect antiretroviral proteins•Interferon-γ inhibits HIV-1 through IDO1-mediated tryptophan depletion•TRIM56 enhances the antiretroviral potential of interferon-αSummaryInterferons (IFNs) exert their anti-viral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). The activity of known ISGs is insufficient to account for the antiretroviral effects of IFN, suggesting that ISGs with antiretroviral activity are yet to be described. We constructed an arrayed library of ISGs from rhesus macaques and tested the ability of hundreds of individual macaque and human ISGs to inhibit early and late replication steps for 11 members of the retroviridae from various host species. These screens uncovered numerous ISGs with antiretroviral activity at both the early and late stages of virus replication. Detailed analyses of two antiretroviral ISGs indicate that indoleamine 2,3-dioxygenase 1 (IDO1) can inhibit retroviral replication by metabolite depletion while tripartite motif-56 (TRIM56) accentuates ISG induction by IFNα and inhibits the expression of late HIV-1 genes. Overall, these studies reveal numerous host proteins that mediate the antiretroviral activity of IFNs.Graphical abstract
0
Citation234
0
Save
0

A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research

Suzannah Rihn et al.Feb 25, 2021
The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science.
0
Citation197
0
Save
32

Meta-analysis of virus-induced host gene expression reveals unique signatures of immune dysregulation induced by SARS-CoV-2

Kuchi Srikeerthana et al.Dec 30, 2020
Abstract The clinical outcome of COVID-19 has an extreme age, genetic and comorbidity bias that is thought to be driven by an impaired immune response to SARS-CoV-2, the causative agent of the disease. The unprecedented impact of COVID-19 on global health has resulted in multiple studies generating extensive gene expression datasets in a relatively short period of time. In order to better understand the immune dysregulation induced by SARS-CoV-2, we carried out a meta-analysis of these transcriptomics data available in the published literature. Datasets included both those available from SARS-CoV-2 infected cell lines in vitro and those from patient samples. We focused our analysis on the identification of viral perturbed host functions as captured by co-expressed gene module analysis. Transcriptomics data from lung biopsies and nasopharyngeal samples, as opposed to those available from other clinical samples and infected cell lines, provided key signatures on the role of the host’s immune response on COVID-19 pathogenesis. For example, severity of infection and patients’ age are linked to the absence of stimulation of the RIG-I-like receptor signaling pathway, a known critical immediate line of defense against RNA viral infections that triggers type-I interferon responses. In addition, co-expression analysis of age-stratified transcriptional data provided evidence that signatures of key immune response pathways are perturbed in older COVID-19 patients. In particular, dysregulation of antigen-presenting components, down-regulation of cell cycle mechanisms and signatures of hyper-enriched monocytes were strongly correlated with the age of older individuals infected with SARS-CoV-2. Collectively, our meta-analysis highlights the ability of transcriptomics and gene-module analysis of aggregated datasets to aid our improved understanding of the host-specific disease mechanisms underpinning COVID-19.
32
Citation5
0
Save
0

Timing and magnitude of the type-I interferon response are determinants of disease tolerance in arbovirus infection

Alexandra Hardy et al.Oct 19, 2022
ABSTRACT Infected hosts possess two alternative strategies to protect themselves against the negative impact of virus infections: (i) “resistance”, directed to abrogate virus replication, or (ii) “disease tolerance”, aimed to avoid organ and tissue damage without overly controlling viral burden. The overall principles governing pathogen resistance are well understood, while less is known about those involved in disease tolerance. Here, we studied bluetongue virus (BTV), the cause of a major disease of ruminants, bluetongue, as a model system to investigate the mechanisms of disease tolerance. BTV induces clinical disease mainly in sheep, while cattle are considered reservoirs of infection, rarely exhibiting clinical symptoms despite sustained viremia. Here, we show that BTV consistently reaches higher titres in ovine primary cells, compared to cells derived from cattle. The variable replication kinetics of BTV in sheep and cattle cells were mostly abolished by abrogating the cell type-I interferon (IFN) response. By screening a library of bovine interferon stimulated genes (ISGs), we identified restriction factors blocking BTV replication, however both sheep and cattle orthologues of these antiviral genes possess anti-BTV properties. Importantly, we demonstrate that BTV induces a faster host cell protein synthesis shutoff in primary sheep cells, compared to cattle cells, which results in an earlier downregulation of antiviral proteins. Moreover, by RNAseq we also show a more pronounced expression of ISGs in BTV infected cattle cells compared to sheep cells. Our data provide a new perspective on how the type-I IFN response in reservoir species can have overall positive effects on both virus and host evolution.
0
Citation1
0
Save
33

TRIM25 and ZAP target the Ebola virus ribonucleoprotein complex to mediate interferon-induced restriction

Rui Galão et al.May 24, 2021
Summary Ebola virus (EBOV) causes highly pathogenic disease in primates. Through screening a library of human interferon-stimulated genes (ISGs), we identified TRIM25 as a potent inhibitor of EBOV transcription-and-replication-competent virus-like particle (trVLP) propagation. TRIM25 overexpression inhibited the accumulation of viral genomic and messenger RNAs independently of the RNA sensor RIG-I or secondary proinflammatory gene expression. Deletion of TRIM25 strongly attenuated the sensitivity of trVLPs to inhibition by type-I interferon. The antiviral activity of TRIM25 required ZAP and the effect of type-I interferon was modulated by the CpG dinucleotide content of the viral genome. We find that TRIM25 interacts with the EBOV vRNP, resulting in its autoubiquitination and ubiquitination of the viral nucleoprotein (NP). TRIM25 is recruited to incoming vRNPs shortly after cell entry, and leads to dissociation of NP from the vRNA. We propose that TRIM25 targets the EBOV vRNP, exposing CpG-rich viral RNA species to restriction by ZAP. Highlights TRIM25 and ZAP play a major role on type I IFN-mediated inhibition of EBOV trVLP replication TRIM25 interacts with the EBOV NP and is recruited to vRNPs in the cytoplasm after viral entry TRIM25 ubiquitinates NP and displaces it from the viral genome, facilitating ZAP interaction ZAP targets CpGs in the EBOV genome to inhibit EBOV trVLP replication
Load More