DR
Davide Ruggero
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
25
(64% Open Access)
Cited by:
10,657
h-index:
56
/
i10-index:
80
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche

Rosandra Kaplan et al.Dec 1, 2005
The cellular and molecular mechanisms by which a tumour cell undergoes metastasis to a predetermined location are largely unknown. Here we demonstrate that bone marrow-derived haematopoietic progenitor cells that express vascular endothelial growth factor receptor 1 (VEGFR1; also known as Flt1) home to tumour-specific pre-metastatic sites and form cellular clusters before the arrival of tumour cells. Preventing VEGFR1 function using antibodies or by the removal of VEGFR1+ cells from the bone marrow of wild-type mice abrogates the formation of these pre-metastatic clusters and prevents tumour metastasis, whereas reconstitution with selected Id3 (inhibitor of differentiation 3)-competent VEGFR1+ cells establishes cluster formation and tumour metastasis in Id3 knockout mice. We also show that VEGFR1+ cells express VLA-4 (also known as integrin α4β1), and that tumour-specific growth factors upregulate fibronectin—a VLA-4 ligand—in resident fibroblasts, providing a permissive niche for incoming tumour cells. Conditioned media obtained from distinct tumour types with unique patterns of metastatic spread redirected fibronectin expression and cluster formation, thereby transforming the metastatic profile. These findings demonstrate a requirement for VEGFR1+ haematopoietic progenitors in the regulation of metastasis, and suggest that expression patterns of fibronectin and VEGFR1+VLA-4+ clusters dictate organ-specific tumour spread. Many tumours have a tendency towards metastasis to specific organs. The mechanisms that guide tumour cells to a specific tissue are largely unknown, but current thinking is that it may involve molecular differences inherent in the tumour cells themselves, modulated by the effects of immune cells and other tissues. New research suggests another possibility: haematopoietic precursor cells in the bone marrow expressing VEGFR1 appear to home in on specific sites before the tumour cells get there, paving the way for wandering metastatic cells by forming niches where they can locate and multiply. The concept of a pre-metastatic niche, in which non-cancer cells promote future metastasis, is a novel one that raises the possibility that targeting VEGFR1 and related molecules could have therapeutic value.
0
Citation3,028
0
Save
0

The translational landscape of mTOR signalling steers cancer initiation and metastasis

Andrew Hsieh et al.Feb 21, 2012
The mammalian target of rapamycin (mTOR) kinase is a master regulator of protein synthesis that couples nutrient sensing to cell growth and cancer. However, the downstream translationally regulated nodes of gene expression that may direct cancer development are poorly characterized. Using ribosome profiling, we uncover specialized translation of the prostate cancer genome by oncogenic mTOR signalling, revealing a remarkably specific repertoire of genes involved in cell proliferation, metabolism and invasion. We extend these findings by functionally characterizing a class of translationally controlled pro-invasion messenger RNAs that we show direct prostate cancer invasion and metastasis downstream of oncogenic mTOR signalling. Furthermore, we develop a clinically relevant ATP site inhibitor of mTOR, INK128, which reprograms this gene expression signature with therapeutic benefit for prostate cancer metastasis, for which there is presently no cure. Together, these findings extend our understanding of how the ‘cancerous’ translation machinery steers specific cancer cell behaviours, including metastasis, and may be therapeutically targeted. Ribosome profiling reveals specialized translation of the prostate cancer genome by oncogenic mTOR signalling; stringent inhibition of mTOR signalling reduces prostate cancer invasion and metastasis in a mouse model. The mTOR pathway is important in the regulation of protein synthesis and is activated in many human cancers. Two papers in this issue of Nature use ribosome profiling to study the control of messenger RNA translation by mTOR signalling. Hsieh et al. find that in prostate cancer cells and mouse prostate tumours, the translation of several genes involved in cancer invasion is regulated by mTOR by means of the 4EBP1 translational repressor. The experimental drug INK128, currently in clinical trials in people with prostate cancer, inhibits mTOR signalling and reduces the progression of prostate cancers to invasive carcinomas in a mouse model. Thoreen et al. show that through the 4E-BP protein family, the mTORC1 kinase recognizes and regulates a subset of mRNAs with an oligopyrimidine motif at the 5′ end.
0
Citation1,211
0
Save
0

Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2

Michael Feldman et al.Feb 7, 2009
The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)-->Akt-->mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease.
0

Autism-related deficits via dysregulated eIF4E-dependent translational control

Christos Gkogkas et al.Nov 21, 2012
Hyperconnectivity of neuronal circuits due to increased synaptic protein synthesis is thought to cause autism spectrum disorders (ASDs). The mammalian target of rapamycin (mTOR) is strongly implicated in ASDs by means of upstream signalling; however, downstream regulatory mechanisms are ill-defined. Here we show that knockout of the eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2)—an eIF4E repressor downstream of mTOR—or eIF4E overexpression leads to increased translation of neuroligins, which are postsynaptic proteins that are causally linked to ASDs. Mice that have the gene encoding 4E-BP2 (Eif4ebp2) knocked out exhibit an increased ratio of excitatory to inhibitory synaptic inputs and autistic-like behaviours (that is, social interaction deficits, altered communication and repetitive/stereotyped behaviours). Pharmacological inhibition of eIF4E activity or normalization of neuroligin 1, but not neuroligin 2, protein levels restores the normal excitation/inhibition ratio and rectifies the social behaviour deficits. Thus, translational control by eIF4E regulates the synthesis of neuroligins, maintaining the excitation-to-inhibition balance, and its dysregulation engenders ASD-like phenotypes. Mice lacking 4E-BP2, an eIF4E repressor, display increased translation of neuroligins; the mice also show autism-related behaviours and alterations in hippocampal synaptic activity, and these are reversed by normalization of eIF4E activity or neuroligin 1 levels. Aberrant protein synthesis has been hypothesized as one causal mechanism of autism spectrum disorders (ASDs), but the details of which pathways are disrupted remain unknown. Disruption of eIF4E, a key factor for translation initiation, has been associated with human autism, and now two independent papers implicate excessive cap-dependent translation in synaptic and ASD-related behavioural deficits in mice. Nahum Sonenberg and colleagues show that mice lacking 4E-BP2, an eIF4E repressor, display increased translation of neuroligins, synaptic proteins strongly implicated in autism. The mice also display ASD-related behaviors and alterations in hippocampal synaptic activity, which are reversed by normalization of eIF4E activity or neuroligin 1 levels. Eric Klann and colleagues show that mice overexpressing eIF4E also display ASD-related behaviours and altered synaptic activity in the hippocampus, prefrontal cortex and striatum, and that some phenotypes can be rescued with the cap-dependent translation inhibitor 4EGI-1. The converging results from these two studies implicate cap-dependent translation as a potential therapeutic target for treatment of ASD-related symptoms.
0
Citation471
0
Save
0

Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency

Maria Barna et al.Nov 16, 2008
Barna et al. show that Myc-driven tumorigenesis is dependent on its ability to increase protein synthesis, as haploinsufficiency in ribosomal proteins decreases Myc-induced tumour formation. However, tumours caused by the loss of p53 were not affected. Myc stimulates cap-dependent protein translation at the expense of IRES-dependent translation, leading to the synthesis of a different set of proteins, and this effect is reversed by ribosomal protein haploinsufficiency. Of the proteins misregulated, Cdk11 is shown to be important for the effects of Myc on genomic instability that probably contributes to Myc-induced tumour formation. This study shows that Myc-driven tumourigenesis is dependent on its ability to increase protein synthesis, as haploinsufficiency in ribosomal proteins decreases Myc-induced tumour formation. However, tumours caused by the loss of p53, were not affected. Myc stimulates cap-dependent protein translation at the expense of IRES-dependent translation, leading to the synthesis of a different set of proteins, and this effect is reversed by ribosomal protein haploinsufficiency. The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA1,2. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Eμ-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE)3,4,5, which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Eμ-Myc/+ mice. When accurate translational control is re-established in Eμ-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.
0
Citation408
0
Save
Load More